

KOLHAPUR INSTITUTE OF TECHNOLOGY'S COLLEGE OF ENGINEERING (AUTONOMOUS), KOLHAPUR

Curriculum for

B. Tech Programme

in

Environmental Engineering

Kolhapur Institute of Technology's

College of Engineering (Autonomous), Kolhapur

				Hours/Week		Evaluation Scheme				
Course	C N	Curriculum]	Marks	
Code	Course Name	Component	L	Т	Р	Credits	Component	Max	Min for passing	
							ISE I	10	•	
	Applied	DC	2	1			MSE	30		10
UEN V0301	Mathematics	BS	3	1	-	4	ISE II	10		40
							ESE	50	20	
	E						ISE I	10		
LIENW0202	Chamiatery Pr	DC	4			4	MSE	30		40
UEIN V 0502	Microbiology	83	4	-	-	4	ISE II	10		40
	Microbiology						ESE	50	20	
							ISE I	10		
	Fluid	DC	2			2	MSE	30		40
UEIN VUSUS	Mechanics	PC	3	-	-	3	ISE II	10		40
							ESE	50	20	
							ISE I	10		
	Structural	DC	2			2	MSE	30		40
UEN V0304	Mechanics	PC	3	-	-	3	ISE II	10		
							ESE	50	20	
UENV0305	D 111						ISE I	10		40
	Building	DC	2				MSE	30		
	Construction	PC	3	-	-	3	ISE II	10		40
	Technology						ESE	50	20	
UENV0361	Audit Course I: Environmental Studies	BS	2	-	-	-	ESE	50	20	40
	Water Quality						ISE	50	2	0
UENV0331	Monitoring Laboratory	BS	-	-	2	1	ESE(OE)	25	1	0
	Fluid						ISE	50	2	0
UENV0332	Mechanics Laboratory	PC	-	-	2	1	ESE(OE)	25	1	0
UENV0333	Strength of Materials Laboratory	PC	-	-	2	1	ISE	25	1	0
	Material						ISE	50	2	0
UENV0334	Testing Laboratory	PC	-	-	2	1	ESE(OE)	25	1	0
UENV0335	Computer Aided Design Laboratory	ES	-	-	2	1	ISE	50	2	0
18					10	22	500 + 300 = 8	$800 + A^{2}$	udit C	ourse

Teaching and Evaluation scheme for Second Year B. Tech. Program in Environmental Engineering Semester-III

Total Credits - 22, Total Contact hours - 29

Second Year B. Tech. Program in Environmental Engineering Semester - IV

			Hours/Week				Evaluation Scheme				
Course	Course N. ora	Curriculum]	Marks		
Code	Course in ame	Component	L	Т	Р	Credits	Component	Mor	Min	for	
								wax	pass	ing	
							ISE I	10			
	Summering and Coordina	DC	2			2	MSE	30		40	
UEN V0401	Surveying and Geomatics	PC	3	-	-	3	ISE II	10		40	
							ESE	50	20		
							ISE I	10			
	Water Resources	DC	2	1			MSE	30		40	
UENV0402	Engineering	PC	3	1	-	4	ISE II	10		40	
							ESE	50	20		
							ISE I	10			
	Building Planning and	DC					MSE	30		10	
UENV0403	Design*	PC	2	-	-	2	ISE II	10		40	
							ESE [*]	50	20		
							ISE I	10			
UENV0404	Environmental	DC					MSE	30		10	
	Hydraulics	PC	3	-	-	3	ISE II	10		40	
							ESE	50	20		
							ISE I	10			
	Professional Elective I	PE	2	1			MSE	30		40	
UENV04**			3	1	-	4	ISE II	10		40	
							ESE	50	20	1	
	Audit Course II:										
UENV0462	Environmental	ES	2	-	-	-	ESE	50	20	40	
	Governance										
UENV0431	Surveying Laboratory	PC	_	_	2	1	ISE	50	20)	
ULIN V0431	Surveying Laboratory	IC	-	-	2	1	ESE (OE)	25	10)	
LIENW0432	Building Planning and	PC			4	2	ISE	50	20)	
UEN V0432	Design Laboratory	rc	-	-	4	4	ESE (OE)	25	10)	
LIENV0433	Open Channel Hydraulics	PC			2	1	ISE	50	20)	
UEN V0433	Laboratory	rc.	-	-	2	1	ESE (OE)	25	10)	
LIENV0434	Computational	PC	_	_	2	1	ISF	50	21)	
0LN 00434	Laboratory	10	_		2	1	15L	50	2	5	
	Environmental										
UENV0435	Instrumentation	PC	-	-	2	1	ISE	25	10		
	Laboratory										
			16	2	12	22	500 + 300 = 8	800 + A	udit Co	ourse	

Total Credits - 22, Total Contact hours - 30

*End Semester Examination of 4 hours

Professional Elective – I									
UENV0421	Ecology and Environmental Sanitation								
UENV0422	Remote Sensing and GIS								
UENV0423	Engineering Geology								

Third Year B. Tech. Program in Environmental Engineering Semester - V

			Hrs/Week				Evaluation Scheme			
Course	Course Norre	Curriculum						N	Iark	5
Code	Course Name	Component	L T P		Р	Credits	Component	Mor	Mi	n for
								Max	pa	ssing
							ISE I	10		
	Water Supply	DC	2			2	MSE	30		40
UEN VUSUI	Engineering	PC	3	-	-	3	ISE II	10		40
							ESE	50	20	
	Fasiassains						ISE I	10		
	Engineering	UC	2	1		4	MSE	30		40
UENV0502	Economica	нз	3		-	4	ISE II	10		
	Economics						ESE	50	20	
	a						ISE I	10		
UENV0503	Solid and Hazardous Waste Management	PC	2			2	MSE	30		40
			3	-	-	3	ISE II	10		
							ESE	50	20	
							ISE I	10		
UENV0504	Geotechnical	DC	2	1		4	MSE	30		40
	Engineering	PC	3	1	-	4	ISE II	10		40
							ESE	50	20	
	Professional Elective II	PE			-	4	ISE I	10		40
			3	1			MSE	30		
UEN V05**				1			ISE II	10		
							ESE	50	20	
UENV0563	Audit Course III: Transportation Engineering	PC	2	-	-	-	ESE	50	20	40
LIENW0531	Water Treatment	PC			2	1	ISE	50		20
011100331	Laboratory	10	-	-	2	1	ESE (OE)	50		20
	Solid Waste						ISE	50		20
UENV0532	Monitoring Laboratory	PC	-	-	2	1	ESE (OE)	25		10
LIENV0533	Geotechnical	PC			2	1	ISE	50		20
UEIN V0555	Engineering Lab	rc	-	-	2	1	ESE (OE)	50		20
UENV0541	Mini Project Lab	MC	-	-	2	1	ISE	25		10
				3	8	22	500 + 300 = 80	$00 + \mathbf{Au}$	dit C	ourse

Total Cred	lits - 22. T	otal Contac	t hours – 28
	1105 22 9 I	otur Contac	inours 20

Professional Elective – II								
UENV0521	Renewable Energy Engineering							
UENV0522	Green Buildings							
UENV0523	Noise Pollution and Control							

Third Year B. Tech. Program in Environmental Engineering Semester - VI

	Teaching Scheme		cheme	Evaluation Scheme							
Course	Course Nome	Curriculum						I	Mark	S	
Code	Course Name	Component	L	Т	Р	Credits	Components	м	M	in for	
								Max	passing		
							ISE-I	10		Ŭ	
	Waste Water	DC	2			2	ISE-II	10		40	
UENVUOUI	Engineering	PC	3	-	-	3	MSE	30		40	
							ESE	50	20		
							ISE-I	10			
LIENV0602	Air Pollution and	PC	3			3	ISE-II	10		40	
011100002	Control	IC	5	-	-	5	MSE	30		40	
							ESE	50	20		
	Design of						ISE-I	10			
UENV0603	Concrete	PC	4			4	ISE-II	10		40	
UEINVUOUS	Structures	IC	4	-	-	-	MSE	30		40	
	Structures						ESE	50	20		
							ISE-I	10			
UENV06**	Professional	DE	3	1		4	ISE-II	10		40	
	Elective III	ГĽ	5	1	-	4	MSE	30		40	
							ESE	50	20		
							ISE-I	10		40	
OEI 06**	Open Elective I	OE	2	1		2	ISE-II	10			
OELOO			2	1	-	5	MSE	30			
							ESE	50	20		
	Audit Course IV:										
UENV0664	Research	PC	2	-	-	-	ESE	50	20	40	
	Methodology										
	Waste Water						ISE	50		20	
UENV0631	Engineering	PC	-	-	2	1	ESE (OE)	50		20	
	Laboratory						202 (02)				
	Air Pollution and	DC			•		ISE	50		20	
UENV0632	Control	PC	-	-	2	1	ESE (OE)	25		10	
	Laboratory						· · ·				
	Congrata										
UENV0633	Structures	PC	-	-	2	1	ISE	50		20	
	Laboratory										
	Design &										
	Drawing of						ISE	50		20	
UENV0634	Environmental	PC	-	-	4	2					
	Systems				4		ESE (OE)	25		10	
	Laboratory						(02)				
	· · · · · ·		17	2	10	22	500 + 300 = 80)0 + Au	dit C	ourse	

Total Credits - 22, Total Contact hours - 29

Professional	Elective – III	Open Elective I			
UENV0621	Environmental Geotechnology	UOEL0631	Environmental Laws and Policies		
UENV0622	Optimization Techniques	UOEL0632	Occupational Health and Safety		
UENV0623	Operation and Maintenance of	UOEL0633	Water Conservation and		
	Environmental Facilities		Management		

Final Year B. Tech. Program in Environmental Engineering Semester-VII

]	Teach	ing S	Scheme	Evaluation Scheme			
Course	Course Nome	Curriculum						Ma	arks	
Code	Course Ivallie	Component	L	Т	Р	Credits	Components	Max	Min for	
								IVIAX	passing	
							ISE I	10		
UENV0701	Industrial Waste	DC	3	_	_	3	MSE	30		40
OLIV0/01	Treatment	I.C.	5		_	5	ISE II	10		10
							ESE	50	20	
							ISE I	10		
LIENW0702	Advance Water and	PC	3	-		3	MSE	30		40
ULINV0702	Wastewater Treatment	rc	5		_	5	ISE II	10		40
							ESE	50	20	
							ISE I	10		
LIENW0702	Quantity Surveying and Valuation *	DC	2			2	MSE	30		40
UENV0703		PC	3	-	-	3	ISE II	10		
							ESE *	50	20	
					ISE I	10				
UENV0704	EIA and	DC	2	1			MSE	30		40
	Environmental	PC	3	1	-	4	ISE II	10		40
	Legislation						ESE	50	20	
	Open Elective II						ISE I	10		
		OE	2	1		2	MSE	30		40
OEL0/**			2	1	-	3	ISE II	10		40
							ESE	50	20	
	Audit Course V:	DC	2				ESE	50	20	40
UEINV0703	Management	PC	2	-	-	-	ESE	50	20	40
LIENW0721	Treatability Studies	DC			2	1	ISE	50		20
UEINV0/51	Laboratory	PC	-	-	2	1	ESE (OE)	25		10
	Quantity Surveying						ISE	50		20
UENV0732	and Valuation Laboratory	PC	-	-	2	1	ESE (OE)	50	20	
	Seminar and									
UENV0741	Vocational Training	МС	-	-	2	1	ISE	50		20
	Laboratory	_			2	_		-		
	Project Phase I				2		IOF	50		20
UENVU/51	Laboratory	MC	-	-	2	1	ISE	50		20
			16	2	08	20	$\overline{500 + 300} = 8$	00 + Audit	Cou	rse

Total Credits – 20, Total Contact hours – 26

*End Semester Examination of 4 hours

Sr. No.	Open Elective II
UOEL0731	Disaster Management and Risk Analysis
UOEL0732	Waste Management

Final Year B. Tech. Program in Environmental Engineering Semester-VIII

Commo	Commo	Constanton		Teachi	ing Sch	eme	Evaluation Scheme			
Course	Nomo	Component	т	т	р	Credita	Componenta	Marks		
Code	Ivalle	Component	L	1	r	Creans	Components	Max	Min for passing	
UENV0852	Dreiset	MC					ISE I	75	30	
	Project Dhose II	MC	-	-	12	6	ISE II	75	30	
	Phase II						ESE (OE)	150	60	
	Professional Elective IV	PE		-	-	3	ISE-I	10		
			2				ISE-II	10	20	
UEINVUO			5				MSE	30		
							ESE	50	20	
							ISE-I	10		
	Professional	DE	2	-	-	2	ISE-II	10	20	
UEINVUO	Elective V	PE	5			3	MSE	30		
							ESE	50	20	
			6	-	12	12	300 + 100 + 100 = 500			

Total Credits - 12, Total Contact hours - 18

Professional	Elective – IV	Professional Elective – V				
UENV0821	Industrial Health and Safety	UENV0824	Environmental Management System			
UENV0822	Environmental Modeling and Simulation	UENV0825	Project Management			
UENV0823	Design of Environmental Structures	UENV0826	Clean Development Mechanism			

Kolhapur Institute of Technology's College of Engineering (Autonomous), Kolhapur

		Tot	al Credits f	rom S.Y. H	B. Tech to	Final Year	B. Tech			
Common on t	F.Y. 1	B.Tech	S.Y. B.Tech		T.Y.	B.Tech	Final Ye	ar B.Tech	Total	0/2 200
Component	Sem I	Sem II	Sem III	Sem IV	Sem V	Sem VI	Sem VII	Sem VIII	Totai	% age
Basic Sciences (BS)	9	9	9	-	-	-	-	-	27	15.88
Engineering Sciences	13	13	1	-	-	-	-	-	27	15.88
Program Core (PC)	-	-	12	18	13	15	15	-	73	42.94
Professional Elective (PE)	-	-	-	4	4	4	-	6	18	10.59
Open Elective (OE)	-	-	-	-	-	3	3	-	6	3.53
Mandatory Course (MC)	-	-	-	-	1	-	2	6	9	5.29
Humanities (HS)	3	3	-	-	4	-	-	-	10	5.88
Total	25	25	22	22	22	22	20	12	170	100

SYLLABUS T. Y. B. Tech Environmental Engineering SEMESTER - V

Class: T.Y.	B. Tech. Environmental Engineering	L	Т	Р	Credits
Title of the	Course: Water Supply Engineering	3	-	-	3
Course Co	de: UENV0501				
Course Pre	e-Requisite:				
Students sh	all have knowledge of:				
• Env	ironmental chemistry and microbiology				
• Hyd	raulics and water resource engineering				
Course Des	scription:				
This course treatment pl water suppl completing treatment pl	e teaches the fundamentals and design concepts of walants, as well as the processes involved with their ope by systems, water quality issues, and water treatment this course student will be able to design, water lants.	ater su tration. proce collect	pply sy Topics sses an tion sy	vstems s cover nd syst stems	and water red include tems. After and water
Course Ob	jectives:				
During this	course students will				
1. knov	w sources and characteristic of raw water, quantity an	d qual	ity of v	vater f	or drinking
purp	oose.				
2. unde	erstand concepts of collection and conveyance of wate	er from	source	e.	
3. acqu	ire an understanding of the fundamental concepts and	d detai	led tech	nnical	knowledge
of th	ne technologies required for water treatment.				
Course Lea	arning Outcomes:	_			
СО	After the completion of the course the student			Bloon	ı's
	should be able to		I	Descrip	otor
CO 1	Explain basic requirements of raw water abstract	ion,	(Cognit	ive
	transport, treatment and distribution for drinking w	ater			

	supply systems for urban and rural areas	
CO 2	Select treatment process based on quality of raw water	Cognitive
CO 3	Design raw water abstraction, transport, conventional treatment units and distribution systems	Cognitive

CO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	3	2				2						
CO2			3									
CO3	2		2									

CO	PSO1	PSO2
CO1	2	
CO2		2
CO3		2

Assessments:			
	Assessment	Weightage (Marks)	
	ISE-1	10	
	MSE	30	
	ISE-2	10	
	ESE	50	
• ISE-1 and ISE-2: A	ssessment is bas	sed on Assignment/Dec	lared Test/Quiz/Seminar/Group

Discussions etc. (For each ISE two different tools are to be used). MSE: Assessment is based on 50% of course content (Normally first three Units) ESE: Assessment is based on 100% course content with 30% weightage for course content • covered before MSE and 70% weightage for course content covered after MSE. **Course Contents:** Unit 1 : Introduction, quantity and quality of Water: 6 Hrs. Quantity of water, population forecasting, rate of consumption for various purposes, factors affecting consumption, fluctuation in demand, surface water sources, ground water sources, quality of water, drinking water standards (IS10500), physical; chemical and bacteriological characteristics of water. **Unit 2 : Collection and conveyance of water:** 4 Hrs. Intake works-types, design of rising main, economic size of rising main, location and design of jack well and pump house. Unit 3 : Treatment of water: 10 Objectives and necessity of treatment, study of flow sheet for different sources of Hrs. water, aeration, two film theory of gas transfer, types of aerators, theory of coagulation and flocculation, rapid mix and slow mix units, design of flash mixer, design of mechanical flocculator, types of settling, design of sedimentation tank, filtration process, classification of filters, design of rapid sand filter, introduction to multimedia filters and pressure filters. Unit 4 : Disinfection: 6 Hrs. Mechanism of Disinfection, Physical & chemical disinfectants, factors affecting disinfection, Characteristics of good disinfectant, chlorination- types, break point chlorination, introduction to UV and ozone disinfection. **Unit 5: Miscellaneous treatments:** 6 Hrs. Water softening: Lime soda process, recarbonation, ion exchange process, Removal of colour, taste and odour, iron and manganese, fluoridation and defluoridation. Unit 6: Water supply schemes: 8 Hrs. House connection from mains, different valves, meters and hydrants, storage reservoirs, balancing reservoir, detection and prevention of leaks in the distribution systems, maintenance of distribution systems. Necessity of water audit, water Audit in domestic sector, water losses and follow up. Rural water supply systems, selection of sources, quantitative requirements. Pre-feasibility and Feasibility report, Preparation of DPR **Textbooks:** 1. Water Supply & Sanitary Engineering by by Birdie G. S., Birdie J. S., Dhanpatrai Publishing Company. 2. Water Supply Engineering by by Dr. B. C. Punmia, Er. Ashok Kr. Jain, Dr.Arun Kumar Jain **References:** 1. Manual of Water Supply and Treatment (3rd ed)- Ministry of Urban Development, New Delhi, 1991.Water Quality and Treatment Handbook -American Water Works Association, McGraw-Hill Pub. 1999. 2. Mark J. Hammer & Mark J. Hammer Jr., Water and Waste Water Technology, Prentice Hall of India Pvt. Ltd., 1998, New Delhi. 3. Fair, Geyer & Okun, Water & Waste Water Engineering, John Wiley, 1966, New York. 4. Ernest W. Steel & Terence J. Mc Ghee, Water Supply & Sewage, McGraw Hill, 1990, New York.

5. Physico Chemical Processes for Water Quality Control – Walter J. Weber Jr. Wiley

Unit wise Measurable students Learning Outcomes:

At the end of course students will be able to

ULO1:Explain the structure of drinking water supply systems for urban and rural areas, including sources, forecasting water demand, water transport, treatment processes and distribution and will be able to analyse water quality and interpret the relevance of these in relation to public health and environmental regulations:

ULO2: Explain & design intake works and rising mains:

- **ULO3:** Select treatment process based on quality of raw water and explain & design various conventional water treatment units:
- **ULO4:** Explain disinfection of water:
- **ULO5:** Demonstrate scientific concepts and detailed technical understanding of the technologies required for specific treatment processes for water:
- **ULO6:** Demonstrate scientific concepts and detailed technical understanding of the technologies required for water distribution system, rural water supply and preparation of reports and design of water distribution system:

Class: T. Y. B. Tech Environmental Engineering	L	Т	Р	Credit
Title of the Course: Engineering Management & Economics	3	1	-	4
Subject Code : UENV0502				
Course Pre-Requisite: Students must have knowledge of				
Basic Civil Engineering				
En sin a suin a Mathematica				

Engineering Mathematics Environmental Studies

Course Description:

Students will learn basic principles of management, including their components. Understands the importance of scheduling along with their practical applications. Will able to identify critical activities from various activities also it will enhance the skill of students in material management & decision making.

They will able to analyze the economical viability of the project using various techniques. This subject introduces students basic Legislation associated with project activity and its importance.

Course Objectives:

- 1. To explain managerial & leadership roles in engineering projects.
- 2. To discuss the fundamentals of material management & importance of engineering economics in projects.
- 3. To discuss fundamentals of project planning & decision making.
- 4. To elaborate the factors affecting legal aspects of engineering projects.

Course Learning Outcomes:

CO	After	the co	mpletio	on of th	e cour	se the	student	t shoul	d be	В	loom's	
CO	able t	0	-							De	scriptor	•
CO1	Select the managerial & leadership responsibilities in engineering projects.								Cognitive (Remembering)- L1			
CO2	Solve the problems related to project planning & decision making in engineering projects.							on	Co (App	ognitive plying)-L	.3	
CO3	Examine the economical viability of engineering projects & apply principles for managing materials at engineering projects.							ets ng	Co (Ana	ognitive lyzing)-I	_4	
CO4	Assess the legal procedures of engineering projects. Cognitive (Evaluating)-L						L5					
CO-PC) Mapp	oing:										
СО	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12

CO	POI	PO2	PO3	PO4	PO5	PO6	PO 7	PO8	PO9	PO10	POII	PO12
CO1												
		2									3	
CO2												
					3							
CO3												
					3							
CO4												
						1						

CO	PSO1	PSO2
CO1		
CO2		2
CO3		2
CO4		

Assessments :

Assessment	Weightage (Marks)
ISE I	10
ISE II	10
MSE	30
ESE	50

• **ISE-1 and ISE-2:** Assessment is based on Assignment/Declared Test/Quiz/Seminar/Group Discussions etc. (For each ISE two different tools are to be used).

• MSE: Assessment is based on 50% of course content (Normally first three Units)

•	ESE: Assessment is based on 100% course content with 30% weightage for course content
	covered before MSE and 70% weightage for course content covered after MSE.

Course Contents:	
Unit 1:	
Principles of Management (by Henry Fayol).	7 Hrs.
Functions of Management: a) Planning – Nature, Process and Importance of	
Planning, b) Organizing – Types, Organization Charts, Site Layout, c) Staffing –	
Introduction, d) Directing, Co-Ordination, Communication, Motivation and	
Controlling. e) Decision Making: Process, decision Tree (Concept Only)	
Unit 2:	7 Hrs.
Material Management - Purchasing Principles, Stores: Coding System, Function,	
Responsibilities, Record and Accounting, Inventory Control - An Introduction,	
Inventory Cost, EOQ Analysis, ABC Analysis, Safety Stocks.	
Unit 3:	8 Hrs.
Engineering Economics – (a) Introduction, Importance, Time Value of Money,	
Equivalence, Tangible and Intangible Factors,	
b) Economic Comparisons- Present Worth Method, Equivalent Annual Cost	
Method, Capitalized Cost Method, Net Present Value, Rate of Return, Payback	
Method.	
Unit 4:	7 Hrs.
Project Management: Introduction, steps in Project Management - Work Break	
Down Structure. Project Planning - Bar Chart, Mile Stone Chart, Development,	
Critical Path Method (CPM): Introduction, Time Estimates, Floats, Critical Path.	
Crashing of Network.	
Unit 5:	7 Hrs.
Performance Evaluation and Review Techniques (PERT) - Concept of	
Probability Normal and Reta Distribution Time Estimates and Calculations of	
Project Duration Slack Probability of Project Completion Dreadence Network	
appeart	
concept.	

Unit 6:	4 Hrs.
Legal Aspects: Child Labour Act., Workmen's Compensation Act, Minimum	
Wages Act, Factory Act.	
Textbooks:	
1. Engineering Management – Stoner	
2. Principles of Management – Davar	
3. A Text book of Management – A.S.Deshpande	
References:	
1. Operation Research – S.H.Deshpande	
2. Operation Research – Wagner Wikey Easter Ltd., new Delhi	
Unit Outcomes (UOs)	
Unit 1- Implement principles of management & use tools like, Planning, Controlling, Organizi	ing &
Directing. (CO1)	
Unit 2- Able to implement procedures like purchasing, coding, recording while managing ma	terials at
any Engineering projects .(CO3)	
Unit 3 Able to use methods like Present Worth Method, Benefit Cost ratio Etc to study econo	mics of
Control = Able to use methods like r resent worth Method, Benefit Cost ratio Etc to study econoany project (CO2)	
any project.(COS)	
Unit 4- Implement project planning procedures such as Bar chart, Milestone chart & CPM. (C	O2)
	- /
Unit 5- Able to solve project problems using PERT techniques.(CO2)	
Unit 6- Able to select proper site for project and follow legal procedures required. (CO4)	

Class: 7	F. Y. B. Tech Environmental Engineering	L	Т	Р	Credit
Title of Subject	the Course: Solid and Hazardous Waste Management Code : UENV0503	3	-	-	3
Course	Pre-Requisite: Students must have knowledge of				
•	Environmental Studies				
Course	Description:				
In this	Solid and Hazardous Waste Management Course, we w	vill di	scuss	the p	rocesses
involve	d in the management of solid wastes – from waste generation	to fina	al disp	osal.	
Course	Objectives:				
1.	To explain components, generation rate & characteristics of s	olid w	aste.		
2.	To elaborate appropriate treatment & disposal option for solic	l waste	e.		
3.	To explain sources, characteristics, treatment & disposal optic	ons of	hazar	dous v	vaste.
4.	To discuss use of environmental legislation for legal & safe set	olutior	ıs.		
Course	Learning Outcomes:				
CO	After the completion of the course the student should be		Blo	om's	
CO	able to	Descriptor			
	Explain components, generation rate & characteristics of		Cog	gnitive	•
CO1	solid waste.				
		Un	derst	anding	g- L2
	Choose the appropriate treatment & disposal option for		Cog	gnitive	e
CO2	solid waste.		Annly	ving_ l	[3
			appi.	, ing- i	
	Identify sources, characteristics, treatment & disposal	Cognitive			•
CO3	options of hazardous waste.				
			Apply	ying- I	L3
	Make use of environmental legislation for legal & safe		Cog	gnitive	e
CO4	solutions.		Apply	ying- l	L 3

CO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	2											
CO2						2						
CO3		2										
CO4						2						

CO	PSO1	PSO2
CO1	2	-
CO2	2	-
CO3	-	2
CO4	-	-

Assessments :

Assessment	Weightage (Marks)
ISE-1	10
MSE	30
ISE-2	10
ESE	50

- **ISE-1 and ISE-2:** Assessment is based on Assignment/Declared Test/Quiz/Seminar/Group Discussions etc. (For each ISE two different tools are to be used).
- MSE: Assessment is based on 50% of course content (Normally first three Units)
- **ESE:** Assessment is based on 100% course content with 30% weightage for course content covered before MSE and 70% weightage for course content covered after MSE.

Course Contents:	
Unit 1: Introduction solid waste: Sources, composition, generation rates, collection of waste, separation, transfer and transport of waste. Economic aspects of refuse collection, Source Reduction, segregation and salvage, recovery of bye – products.	6
Unit 2: Processing: Composting: Theory of composting, types of composting, factors governing composting, processing before composting, mechanical composting plant, recovery of Bio – gas energy from organic solid waste, RDF.	6
Unit 3: Landfill Design : operation & management of landfill sites: Sanitary landfill site selection, Disposal site classification, Landfill site design, Landfill operation, maintenance and precautions, leachate and its control, control of contamination of ground water, Water quality monitoring, Operation monitoring. Rehabilitation, Closure & end-use.	7
Unit 4: Introduction hazardous waste: Sources, characterization of hazardous waste, compatibility and flammability of chemicals, fate and transport of chemicals, health effects. Waste generation from nuclear power plants & its disposal options. Defining risk and environmental risk, methods of risk assessment, measures,	7
Unit 5: Processes: Chemical treatment processes for Hazardous Waste (combustion, stabilization and solidification of hazardous wastes). Physico-chemical processes for hazardous wastes (soil vapor extraction, air stripping, chemical oxidation), Concept of incinerator.	7

Unit 6:	
Legal Aspects: Municipal solid waste rules, hazardous waste rules, biomedical	6
waste handling rules, fly ash rules, recycled plastics usage rules, batteries rules.	
Textbooks:	
1. Handbook and Solid Waste Disposal – George Tchobanoglous	
2. Hazardous Waste Management - Charles Wentz	
3. Solid Waste Management – Dr. A. D. Bhide	
References:	
1. CPHEEO Manual on Solid Waste Vol. I,II	
Unit wise Measurable Students Learning Objectives and Outcomes:	
UO1- Explain sources, composition & generation rate of solid waste.	
UO2- Choose proper treatment & disposal for solid waste.	
UO3- Select appropriate procedures for construction and operation of sanitary landfill	
UO4- Explain sources, characteristics & associated risk of the hazardous waste	
UO5 Choose proper treatment & disposal for hazardous waste	
UO6- Recall the legislative procedures for various solid waste.	

Class: T.Y.B. Tech. Environmental Engineering Title of the Course: Geotechnical Engineering	L	Т	Р	Year
Course No.: UENV504	3	1	-	2019-20

Course Pre-Requisite:

Students shall have knowledge of:

- Algebra and Engineering Mathematics
- Engineering Physics and Chemistry
- Engineering Mechanics
- Fluid Mechanics

Course Description:

The course imparts fundamental knowledge of geotechnical properties and their significance in Civil and Environmental Engineering. The subject covers; interpretation of index and engineering properties, their field relevance as well as estimation of stresses, development of earth pressure, analysis of stability of earth work. The basics and concepts of foundation design and settlement analysis are also dealt.

Course Objectives:

- 1. To study various soil properties and its methods of determination.
- 2. To understand applications of soil properties in Civil and Environmental Engineering
- 3. To study parameters of soil for strength and stability.
- 4. To understand concepts of foundation design and settlement analysis.

Course Learning Outcomes:

CO	After the completion of the course the will be able to	Bloom's Taxonomy			
After the completion of the course the will be able		Cognitive Dom	nain		
CO1	Explain soil properties and methods for its determination	Understanding	L2		
CO2	Utilize soil properties for predicting soil performance.	Applying	L3		
CO3	Analyze shear strength, earth pressure and slope stability.	Analyzing	L4		
CO4	Evaluate suitability of foundations and estimate settlement	Evaluating	L5		

CO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	3	1	-	2								
CO2	1	3	-	2								
CO3	1	-	2	3								
CO4	-	2	3	-								

CO	PSO1	PSO2
CO1		-
CO2		-
CO3		2
CO4		2

Assessments :						
Assessment	Weightage					
ISE - I	10					
MSE	30					
ISE- II	10					
ESE	50					
Course Contents:						
Unit 1: Properties of Soil: Introduction to Geotechnology and its application areas, Formation of soil, Soil as three phase system, Weight- Volume relationships, Index & Engineering properties of soil, Determination of index properties and its significance, Soil classification and Soil structure						
Unit 2: Soil hydraulics: Modes of occurrence validity, Coefficient of permeability & its dete	e of water in soil, Darcy's law & its ermination methods, Factors affecting					
permeability, Permeability of layered soils. Seepage analysis: Quick sand condition, Uplift pressure, exit gradient, failure due to piping, Flow net - properties and applications, Concept of effective, neutral & total stress in soil mass.						
Unit 3: Compaction & Consolidation:						
 Compaction: Theory, Methods of compaction, Standard Proctor test and Modified Proctor test as per IS – 2720. Field compaction equipments and methods, Field control of compaction, Factors affecting compaction, Consolidation: Consolidation process - Spring analogy, e- log P curve, Terzaghi's theory of one dimensional consolidation, Lab consolidation test, Determination of 						
coefficient of consolidation, Type of settlement	t, rate and time of settlement.					
Unit 4: Shear Strength and its measurement: Concept of shear, Principal plane and stresses, Mohr - Coulomb's theory and failure envelope of types of soil, Total stress approach and effective stress approach, Types of shear test – Direct (box) shear test, Triaxial compression test, Unconfined compression test. Drainage conditions:Unconsolidated–Undrained(U-U), Consolidated -Undrained (C-U) and Consolidated –Drained (C-D)						
Unit 5: Earth Pressure						
Concept, earth pressure at rest, active and passive condition, Rankine's and Coulomb's theory of earth pressure, Estimation of earth pressure in different conditions. Concept of slope stability: Slope classification, slope failure modes, Infinite, Finite slope and analysis of stability, Taylor's stability number, slope protection measures.						
Unit 6 : Foundation Engineering: Bearing Capacity Estimation: Terzaghi's bearing capacity equation, I.S. Code method of bearing capacity evaluation, Effect of various factors on bearing capacity, Plate load test, Standard Penetration Test Foundation Settlement: Computations from I.S. 8009-1976 (Part I) approach and from Plate load test observations, consolidation settlement computations, total, differential settlement, Tolerable settlement. Types of foundation: Shallow & Deep, Design concepts & considerations for						

shallow f	oundations. Introduction to geosynthetics / geotextile.						
TEXT B	TEXT BOOKS & REFERENCE BOOKS						
1. Text book of soil mechanics in theory and practice by Dr. Alam Singh							
(Asian Publishing House, Bombay)							
2. Soil mechanics and Foundation engineering by V. N. S. Murthy.							
(U. B.)	(U. B. S. Publishers and distributors New Delhi						
3. Soil me	echanics and Foundation engineering by B. S. Punmia.						
(A Sau	rabh and Company Pvt. Ltd., Madras)						
5. Geotec	hnical Engineering by P. Purushottam Raj.(Tata Mcgraw Hill Company Ltd. New Delhi)						
7. Soil me	echanics by Terzaghi and Peak. (John Willey and Sons, New- York)						
8. Soil To	esting by T.W. Lambe. (Willey Eastern Ltd., New Delhi)						
9. Geotec	hnical Engineering by Venkatramiah						
Unit wise Measurable Students Learning Objectives and Outcomes:							
U nit	Unit Student Learning outcome						
Omt	Student Learning outcome						
Unit 1	Derive functional relationships, determine soil properties and understand soil						
Unit 1	Derive functional relationships, determine soil properties and understand soil classification and structure.						
Unit 1 Unit 2	Derive functional relationships, determine soil properties and understand soil classification and structure. Analyze flow problem through soil and estimate seepage and stresses developed						
Unit 1 Unit 2	Derive functional relationships, determine soil properties and understand soil classification and structure. Analyze flow problem through soil and estimate seepage and stresses developed in soil.						
Unit 1 Unit 2 Unit 3	Derive functional relationships, determine soil properties and understand soil classification and structure. Analyze flow problem through soil and estimate seepage and stresses developed in soil. Establish criteria for field compaction and suitability of compaction equipments.						
Unit 1 Unit 2 Unit 3	Derive functional relationships, determine soil properties and understand soil classification and structure. Analyze flow problem through soil and estimate seepage and stresses developed in soil. Establish criteria for field compaction and suitability of compaction equipments. Estimate consolidation of soil layer, thereby probable foundation settlement						
Unit 1 Unit 2 Unit 3 Unit 4	Derive functional relationships, determine soil properties and understand soil classification and structure. Analyze flow problem through soil and estimate seepage and stresses developed in soil. Establish criteria for field compaction and suitability of compaction equipments. Estimate consolidation of soil layer, thereby probable foundation settlement Select suitable laboratory method for shear stress parameter determination and						
Unit 1 Unit 2 Unit 3 Unit 4	Derive functional relationships, determine soil properties and understand soil classification and structure. Analyze flow problem through soil and estimate seepage and stresses developed in soil. Establish criteria for field compaction and suitability of compaction equipments. Estimate consolidation of soil layer, thereby probable foundation settlement Select suitable laboratory method for shear stress parameter determination and interpret soil strength.						
Unit 1 Unit 2 Unit 3 Unit 4	Derive functional relationships, determine soil properties and understand soil classification and structure.Analyze flow problem through soil and estimate seepage and stresses developed in soil.Establish criteria for field compaction and suitability of compaction equipments. Estimate consolidation of soil layer, thereby probable foundation settlementSelect suitable laboratory method for shear stress parameter determination and interpret soil strength.Apply theories and calculate magnitude of earth pressure as well as its point of						
Unit 1 Unit 2 Unit 3 Unit 4 Unit 5	Derive functional relationships, determine soil properties and understand soil classification and structure.Analyze flow problem through soil and estimate seepage and stresses developed in soil.Establish criteria for field compaction and suitability of compaction equipments. Estimate consolidation of soil layer, thereby probable foundation settlementSelect suitable laboratory method for shear stress parameter determination and interpret soil strength.Apply theories and calculate magnitude of earth pressure as well as its point of application.						
Unit 1 Unit 2 Unit 3 Unit 4 Unit 5	Derive functional relationships, determine soil properties and understand soil classification and structure.Analyze flow problem through soil and estimate seepage and stresses developed in soil.Establish criteria for field compaction and suitability of compaction equipments. Estimate consolidation of soil layer, thereby probable foundation settlementSelect suitable laboratory method for shear stress parameter determination and interpret soil strength.Apply theories and calculate magnitude of earth pressure as well as its point of application. Analyse slope stability and design a stable slope.						
Unit 1 Unit 2 Unit 3 Unit 4 Unit 5 Unit 6	Derive functional relationships, determine soil properties and understand soil classification and structure.Analyze flow problem through soil and estimate seepage and stresses developed in soil.Establish criteria for field compaction and suitability of compaction equipments. Estimate consolidation of soil layer, thereby probable foundation settlementSelect suitable laboratory method for shear stress parameter determination and interpret soil strength.Apply theories and calculate magnitude of earth pressure as well as its point of application. Analyse slope stability and design a stable slope.Evaluate bearing capacity of soil, predict probable settlement and propose						

Class: Title of	T.Y.B. Tech. Environmental Engineering f the Course: Renewable Energy Engineering	L	Т	Р		Year						
Subjec	t Code (University):											
Course	e No.: UENV0521	3	1	-	20	019-20						
Course	ourse Pre-Requisite:											
Studen	s shall have knowledge of:											
•	Engineering Physics and Chemistry											
•	Ecology and Environmental Science											
•	Principles of management											
Course	Course Description:											
The co	The course emphasizes on studying energy demand, types and potential of renewable energy											
sources	, concepts and technology to harness, its applications an	d limit	ations	•								
Course	Objectives:											
5.	To study energy needs, demand and various renewable a	alterna	tives.									
6.	To understand potential of renewable energy resources.											
7.	7. To study technologies to harness the energy.											
8.	To understand advantages, limitations of resources and	energy	mana	gemen	ıt.							
Course	Course Learning Outcomes:											
СО	CO After the completion of the course the will be able to Bloom's Taxonomy											
	Cognitive Domain											
CO1	Compare conventional and renewable energy resources Understanding L2											
CO2	Identity scope and potential of renewable energy.		App	olying		L3						
CO3	Analyze suitability of renewable energy resource.		Ana	alyzing	2	L4						
CO4	Explain energy management principles and strategies.		Ev	aluatin	ıg	L5						

CO-PO Mapping:

CO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	3	2	-	-						1		
CO2	2	3	-	-		-						
CO3	-	-	2	-			3					
CO4	1	3	-	-			2				-	

CO	PSO1	PSO2
CO1		1
CO2		2
CO3		1
CO4		2

Assessments :

Assessment	Weightage
ISE - I	10
MSE	30
ISE- II	10
ESE	50

Course Contents:

Unit 1: Introduction:

Energy chains, Energy demand, Energy crises. Worlds production & consumption of energy resources. Renewable energy resources, types & potential **3 Hrs.**

Unit 2:	
Solar Energy: Introduction, utilization methods, merits & demerits of solar energy utilization, potential of solar energy, solar radiation, data for India, solar thermal collectors, concentrators & reflectors, collector efficiency, application of solar energy, solar cooker, solar water heating, solar dryer, solar distillation, solar photovoltaic systems, solar pond.	7 Hrs.
 Unit 3: Hydro Energy: Introduction, India's Hydro reserves, merits & limitations, low head, medium head, high head schemes, hydro turbines, economics Geothermal Energy: Introduction, types of geothermal resources, potential of geothermal resources in India & world. Environmental problems in utilization of geothermal resources. 	8 Hrs.
 Unit 4: Wind Energy: Introduction, potential & scope, classification & types of wind machines, application of wind energy, merits & limitations of wind energy. Site selection for wind farm, wind map of India, wind energy station in India Tidal Energy: Tides, tidal range, tidal power, suitably sites & prospects. Types of tidal power plants, single basin, modulated single basin & double basin schemes, main equipments, energy storage. 	7 Hrs.
Unit 5 Ocean thermal energy conversion: Introduction, principle of OTEC, open cycle & closed	
cycle OTEC schemes, potential & prospects in India Wave Energy: Introduction, power of wave, wave data collection, wave machines(wave energy converters), forces on wave machines and associated structures, merits & demerits of wave energy	8 Hrs.
 UNIT 6 Biomass Energy Resources: Biomass energy, biomass energy from cultivated crops & from waste organic matter, biomass conversion processes, incineration & thermo chemical, biochemical conversion of biomass, energy from plants / projects. Energy Management & planning: Energy management principles, Energy & pollution trade off, objectives of energy management, energy strategy & energy planning, Energy audit. 	7 Hrs
Text and Reference books:	
 Environmental studies: Benny Joseph Environmental Biology: K. C. Agarwal Environmental Encyclopedia: Cunningham, W. P. Cooper, T. H. Hepworth (Jaico Pull Energy & Ecology : David M.Gates (Sinaur Associates) Non Conventional Energy Sources: G.D.Rai Power Technologies : Stephenson Energy Technology: S.Rao & B.B.Parulekar 	5.)
Term work: Tutorials based on numerical problems and foundation design problems	

Class: T. Y. B. Tech Environmental Engineering	L	Т	Р	Year					
Title of the Course: Green Building	2	1							
Course No.: UENV0522	3	1							
Course Pre-Requisite:									
Building Planning & Design									
Knowledge of Building Services,									
Basic Civil Engineering	Basic Civil Engineering								
Course Description: The course is imparting fundamental	knowl	edge o	f Intro	oduction to					
Sustainable Site Selection, Passive and Active Architecture, C	Green Ra	ating of	build	ing, Water					
Efficiency Water Efficient Landscaping, Indoor Environmenta	al Qualit	y ,Recy	cling	of Building					
materials	-		-	-					
Course Objectives:									
At the end of the source students will									

At the end of the course students will

- 1. To understand basic knowledge of various parameters of climate and accordingly necessary provision to be made for obtaining comfort condition in building.
- 2. To adapt techniques of reduction of various natural resources used in building
- 3. To explain various methods of improving indoor air quality in buildings.
- 4. To aware of the various rating systems for green building.

Course Learning Outcomes:

CO	After the completion of the course the student should be	Bloom's
CO	able to	Descriptor
1	Study The Various Environmental Parameters For Green Building	Cognitive
2	Design The Various Building Components Of Building Based On Green Concepts	Cognitive
3	Plan Various Energy Systems In The Building	Cognitive
4	Plan Various Systems Of Reducing Natural Resources.	Cognitive
5	Evaluate Indoor Air Quality	Cognitive

CO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
	3											
CO1												
			2									
CO 2												
	2											
CO 3												
					2							
CO 4												
			1									
CO 5												

CO	PSO1	PSO2
	2	
CO 1		
	3	
CO 2		
		2
CO 3		
	1	
CO 4		
	2	
CO 5		

Assessments :

Direct Assessment (60 % + 40%)	Weightage
ISE-1	10
MSE	30
ISE-2	10
ESE	50

• **ISE-1 and ISE-2:** Assessment is based on Assignment/Declared Test/Quiz/Seminar/Group Discussions etc. (For each ISE two different tools are to be used).

• MSE: Assessment is based on 50% of course content (Normally first three Units)

• **ESE:** Assessment is based on 100% course content with 30% weightage for course content covered before MSE and 70% weightage for course content covered after MSE.

Course Contents:	
Unit 1	
Sustainable Site Selection	
Orientation, Building envelop, Building plan layout, Design of Doors and	
windows, Natural ventilation, Solar energy, Use of solar energy for water heating,	10
Solar concentrators, Solar photovoltaic panels, Direct and indirect lighting,	
comparison of various lighting devices- electric tubes, incandescent lamps, CFL	
and LED lamps, Indirect lighting devices -Light Tubes, Fibre optic, Fresnel lense	
Unit – 2	
Passive and Active Architecture, Natural ventilation and air conditioning, Hybrid	
system of active and passive refrigeration and air conditioning. Concept of	
Embodied Energy, Embodied energy of various common building materials,	5
Thermal properties of building components, Thermal storage, emissivity,	
reflectivity, Selection of materials and surface treatment for improvement in	
thermal comfort with minimum energy input. Energy audit of building,	
Unit – 3	
Green Rating of building, LEED criteria, USGBS, CIII-Godrej Green rating,	5
CDM and Carbon trading, Environmental clearance of buildings.	
Unit – 4	
Water Efficiency Water Efficient Landscaping –Rain water harvesting, potable	
water and bore well recharging methods, Minimisation of water use, Dual flush,	
waterless urinals, smart controlled water taps, Segregation and treatment of	
wastewater, Various treatment technologies like septic tank, Anaerobic filter,	6
CWTS, biogas plants advanced treatment options like carbon bed, reverse	
osmosis, electrodialysis, ion exchanger, recycling of treated wastewater for	
different non potable purpose, Domestic solid waste – Segregation, earthworm	
composting other options.	

Unit – 5						
Indoor Environmental Quality						
Low- VOC Emitting Materials - Adhesives & Sealants, Paints & Coatings, Carpet	7					
Systems, Composite Wood & Agro-fiber Products like coconut, jute, bamboo and						
their use as interiors						
Unit-6						
Recycling of Building materials, Existing Walls, Floors & Roof, Interior Non-						
Structural Elements. Construction Waste Management, Materials Reuse, Recycled	7					
Content,, Use of fly ash, foundry sand and other inert solid wastes in buildings	/					
Life cycle analysis, Construction phase, operation phase, demolition, Impact on						
environment and land use.						
Textbooks:						
1. Handbook of energy conscious building						
References:						
1. Handbook of energy conscious building						
Unit wise Measurable Students Learning Objectives and Outcomes:						
ULO 1 Discuss various sustainable site selection criteria (CO1, CO2)						
ULO 2 Explain various active & passive architecture (CO2)						
ULO 3 Discuss various Rating Systems for Building performance.(CO3,CO6)						
ULO 4 Describe various water conservation as well waste water treatment processe	es for					
building effluent.(CO3,CO4)						
ULO 5 Discuss various LOW Voc material and its associated impacts.(CO5)						
ULO 6 Explain the Life Cycle Assessment and Embodied energy for various build	ling					
material. (CO4, CO5)						

Class: 7	F. Y. B. Tech Environmental Engineering	L	Т	Р	Credit				
Title of	f the: Noise Pollution and Control	3	1		4				
Course	e Code:UENV0523								
Course	Pre-Requisite: Knowledge of engineering physics								
Course propaga effects, study o ambien student various	Course Description: This course is intended to make students aware about the sourcessound propagation and measurement in outdoor atmosphere, various auditory and non auditory effects, physiological and psychological on human as well as on environment. It also include study of health monitoring with respect to noise, assessment of Noise Induced Hearing Loss ambient and various engineering and non engineering measures for control of noise. The students will be made aware of the ambient and exposure standards w.r.t. noise as well as various legal provisionsfor regulation and control of noise.								
Course	 Objectives: 1) Study the sound transmission and effects of Noise 2) Learn the measurement of noise in industries and community 3) Learn the various techniques of noise control 4) Study the permissible limits and other legal provisions for 	unity r contr	rol of	noise.					
Course	Course Learning Outcomes:								
CO	After the completion of the course the student should be	Blo	om's	Cogn	itive				
	able to level Descriptor								
CO1	CO1Explain influence of various factors on outdoor2Explaintransmission of sound2Explain								
CO2	Calculate various indices like Leq, L_{DN} , L_{NP} based on noise monitoring data	3	C	alcula	ite				

	noise monitoring data		
CO3	Select various measures for control for noise for industries and community	4	Select
CO4	Compare the measured noise level with permissible limit	4	Compare

	mappin	'5'										
COs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO.1	3					1				1		
CO.2	1	2		3								
CO.3	2		1									
CO.4				2		3						

COs	PSO1	PSO2
CO.1	2	-
CO.2	-	2
CO.3	-	2
CO.4	2	-

Assessments :				
Teacher Assessment:				
Two components of In Semester Evaluation (ISE), On	ne Mid Semester Examination (MSE)		
and one EndSemester Examination (ESE) having 209	%, 30% and 50% weights respec	tively.		
Assessment	<u> </u>			
ISE 1 10				
MSE 30				
ISE 2 10				
ESE 50				
ISE 1 and ISE 2 are based on assignment/declared tes	st/auiz/sominar/Group Discussio	onsoto		
MSE: Assessment is based on 50% of course content	(Normally first three Units)	Jis cic.		
ESE: Assessment is based on 100% course content w	(Normany first three Onits)	acontant		
ESE. Assessment is based on 100% course content w	100-70% weightage for course	e coment		
(normally last three Onits) covered after MSE.				
Course Contents:				
Unit 1:Introduction to noise and sound				
Definition of noise noise up sound Sources of noise	and algoritization Infusionia	7 Hrs.		
Definition of noise, noise vs. sound, Sources of noise	and classification, infrasonic			
and ultrasonic sound, Threshold of hearing,	Threshold of pain, Sound			
characteristics, transmission, in outdoor atmosphe	ere,Factors influencing sound			
transmission in outdoor atmosphere, Measurement of	sound with respect to sound			
pressure Sound power and sound intensity Sound I	evel Meter			
pressure, bound power and sound mensity, bound i				
Unit 2:Community noise				
Characteristics and noise level of sources in community, Measurement of community noise-, Equivalent noise, Average Day & Night noise, Noise Pollution Levels, Noise Percentile, noise contours,				
Unit 3: Impacts of noise				
Anatomy of human ear and mechanism of hearing, human health, auditory effects, physiological and psy animals, plants, and on structures	Effects of noise - effects on ychological effects, effects on	5Hrs		
Unit 4:Industrial noise				
Characteristics and noise levels generated in x	various industrial operations			
Massurement of industrial poise OSHA exposure sta	andarda Exposure	7 Hrs.		
Measurement of moustrial hoise, OSHA exposure sta	indards, Exposure			
measurement, Health Monitoring, Procedure of Audi	iometric testing and			
Interpretation of Noise Induced Hearing Loss				
Unit 5:Control of noise				
varioustechniques forcontrol of noise, noise red	uction at source, acoustical	8 Hrs		
absorbance devices, Enclosure, barrier, Various typ	pes of mufflers, Reduction at			
receiving end, Non engineering control of noise	e, Active Noise Reduction,			
Administrative control of noise, Personal protec	ctive Equipments for noise.			
Strategy for control of noise, Control of communi	ity noise, Frequency analyzer			

and octave band analysis
Unit 6:Legal Provision for control of noise
Legal provisions for control of noise under Noise Pollution (Regulation & 5 Hrs. Control) Rules, 2000 and its amendments, Case studies in India and abroad
 Textbooks: 1. Noise Pollution and Control Strategy by S.P. Singhal, Narosa Publishing House, 2005 2. Noise Pollution – S K Agrawal- APH Publishing carporation New Delhi 2009
 References: Handbook of Environmental management and technology by Gwendolyn Holmes, Ben Ramnasiuesingh and Louis Theodore (A Wiley – Enter science publication) Standard Hand book of Environmental Engineering by Robert A. Corbett (McGraw Hill Inc.) Industrial Pollution by N. Irving Sax (Van Nostrand Reinhold Company) Environmental issues and programme by I. Mohan (Ashish publishing house) Environmental Engineering by G.N.Pandey and G.C. Carney (Tata McGraw Hill) Some thought on Environmental and law by C.S. Mehta (RBSA Publisher) IS code for practice for noise reduction in industrial buildings IS: 3483, 1965 Soil & Noise pollution: DrB.K.Sharma& Dr. H.Kaur, Goel Publishing House, KrishanaPrakashanmandir, Meerut
Unit wise Measurable students Learning Outcomes: At the end of the course, the students will be able to
UO 1 Solve problems based on sound measurement and conversion of units
UO 2 Classify sources of noise and explain various effects of noise
UO 3 Develop various indices used for community noise from given data
UO 4 Compare noise exposure of person to permissible exposure standards and identify NIHL
UO 5 Suggest suitable measures for control of noise in industries and community and PPEs
UO 6 Discuss various legal provisions for control of noise

Class: T. Y. B. Tech Environmental Engineering	L	Т	Р	Credit			
Title of the Course: Audit Course III-	02 hours	-	-	-			
Transportation Engineering	per						
Course No.: UENV0563	week						
Course Pre-Requisite:							
Students shall have the knowledge of:							
Basic Civil Engineering							
Course Description:							
Transportation Engineering course deals with the branche	es of civil e	ngine	ering & req	uirements			

of highways engineering, traffic engineering, bridge engineering, railways engineering and airport engineering

Course Learning Objectives:

- 1. Understand scope of highway engineering & methods of construction.
- 2. Learn various terminologies related with traffic, bridge and airport engineering.
- 3. Study the capacity calculation for highways.
- 4. Understand the level of services provided for urban and rural highways.

Course Outcomes:

COa	After the completion of the course the students will be	Bloom's Cognitive
COS	able to	Descriptor
CO.1	Understand concepts and planning of highway engineering	Cognitive
		(Understanding)
		L2
CO.2	Understand the various components involved in airport	Cognitive
	engineering.	(Understanding)
		L2
CO.3	List the factors affecting design of a various parameters of	Cognitive
	bridge structures.	(Analyzing)
		L4
CO.4	Interpret Highway capacity and level of service of	Cognitive
	highways.	(Analyzing)
		L4

	PT	8										
COs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO.1	-	-	-	-	-	-	-	-	2	-	-	-
CO.2	-	-	-	-	-	-	-	-	2	-	-	-
CO.3	-	-	-	-	-	-	-	-	2	-	-	-
CO.4	_	_	_	_	-	_	_	-	2	-	_	-

COs	PSO1	PSO2
CO.1	-	-
CO.2	-	-
CO.3	-	-
CO.4	-	-

Assessments :	
Assessment	Weightage (Marks)
ISE-1	
MSE	
ISE-2	
ESE	50

• ISE-1 and ISE-2: Assessment is based on Assignment/Declared Test/Quiz/Seminar/Group Discussions etc. (For each ISE two different tools are to be used).

• MSE: Assessment is based on 50% of course content (Normally first three Units) ESE: Assessment is based on 100% course content with 30% weightage for course content

covered before MSE and 70% weightage for course content covered after MSE.

Course Contents:					
Unit: 1 Highway Engineering					
	04 Hrs.				
Surveys Involved, Cross Section, Elements of geometric Design, Design Speed,					
Horizontal Alignment, Vertical Alignment, Sight Distance, Overtaking Lanes,					
Turning Radius, Super Elevation, Space standards for Rural & Urban Roads.					
Unit: 2 Highway Construction:	04Hrs.				
Highway materials, WMM roads, bituminous roads-BC, SDBC, DBM; concrete					
roads-DLC, PQC; soil stabilized road, MOST specifications. Highway Drainage:					
Necessity, surface and subsurface drainage, maintenance and repairs.					
Unit: 3 Traffic Engineering:	05 Hrs.				
Traffic safety, Accident reporting and recording systems, factors affecting road					
safety. Transport planning for target group children, adults, handicapped and					
women. Norms and guidelines for highway landscape. Street lighting types,					
standards and design considerations.					
Traffic Engineering: traffic characteristics, traffic studies and analysis, traffic					
control devices – road marking, traffic sign, traffic signal, intersections.					
Unit: 4 Railway Engineering	04 Hrs.				
a) Introduction: Permanent Way, Components, coning of wheels					
b) Points & Crossing: Terms used, standard points and crossings, design of					
simple turnout various types of track junctions.					
Unit: 5 Bridge Engineering	04 Hrs				
	04 mrs.				
Classification of bridges, selection of site. Bridge Hydrology: determination of					
design discharge linear water way economical span location of piers and					
design discharge, inical water way, economical span, location of piers and					

abutments, afflux, scour depth.						
Construction and maintenance of bridges—Introduction; Recent trends in bridges.						
Unit: 6 Airport Engineering	05 Hrs.					
Introduction: Terminology, Airport Classification ICAO, components of an aircraft, aircraft characteristics.						
Environmental considerations: Air Traffic Control: VFR, IFR, Visual aids, airport lighting and marking.						
Runways: Orientation, wind rose, Basic runway length.						
Textbooks: 1. C Khanna SK and Justo CEG (2005) Highway Engineering, Nem Chand Jain & 2. Railway Engineering – K. F. Antia	Bros Delhi					
 References: Pavement Analysis and Design -Yang H. Huang Prentice-Hall. Principles of Transportation Engineering –ParthaChakroborty and Animesh Das – Prentice-Hall India, New Delhi. India Wright, Highway Engineering, 7th Edition WILEY. Highway Engineering- S.K. Sharma. Bridge Engineering - S.P. Bindra. Bridge Engineering -Ponnuswamy S -Tata Mcgraw Hill Publications. Airport Planning and Design -Khanna S.K., Arora M.G. and Jain S.S Prentice-Hall India, New Delhi. Airport Engineering, Rao G.V, Tata McGraw Hill Transportation Engineering –Dr. L.R. Kadiyali, Publisher: Khanna Publishers, 10.A Text Book Of Railway Engineering- Saxena S.C, Dhanpati Ray publication. 						
Unit Outcomes (UOs):						
UO 1: Describe the scope of highway engineering. CO 1						
UO 2: Explain the properties of the materials used for highway construction. CO 1						
UO3: Interpret the Highway capacity and level of service of rural highways and urb CO 04	oan roads.					
UO4: Explain the various components related to railway track. CO 03						
UO5: Explain the classification of Bridges and site selection. CO 03						
UO6: Describe the environmental Consideration related to Airport engineering. CO	0 02					

Class: T. Y. B. Tech Environmental Engineering Title of the Course: Water Treatment Laboratory						L	Т		Р	Credi				
Course No.: UENV0531								021	nours	ι 1				
										per	week	-		
Course	e Pre-R	equisit	e:						•	-				
Studen	ts shall	have th	e know	ledge o	f: Wate	er Quali	ity Para	meters						
Course	e Descri	iption:												
The co	urse exp	plores t	he knov	vledge	and pri	nciples	of dete	erminatio	on of c	lifferer	nt water	quality		
parameters. It also enables to understand the relationships between different parameters and														
its effect in water treatment and water quality.														
		lives:	tha k	nowloc	lao ond	1 prino	inlag o	f dotorm	inotic	n of	difforon	t water		
1.	auality	parame	i uic K eters	nowiet	ige and	i princ	ipies 0	i uetein	mane		unicien	i water		
2	To und	erstand	the bas	ics of y	vater tr	eatmen	t proces	sses						
Course	e Learn	ing Ou	tcomes	:			• • • • • • •							
COs After the completion of the course the students will be Blog								Bloon	n's Cog	nitive				
	able to)								D	escript	or		
CO1	D1Interpret the quality of water after treatment.										Cognitive			
										(Uno	derstanding)			
G Q Q											L2			
CO2Demonstrate the treatment process of water.Ps									Psy	ychomotor				
											(Set)			
	L2													
CO-PO Mapping:														
CO	1	2	3	4	5	6	7	8	9	10	11	12		
CO1				2			2							
CO2				2							2			
<u> </u>	ments .													
		Asse	essment	,				Weigl	ntage	(Mark	s)			
ISE 50														
ESE (OE) 25														
• ISE: Based on practical performed/ Quiz/ Mini-Project assigned/ Presentation/ Group														
	Discuss	\sin/\ln	ternal o	ral etc.	1	1								
Course	ESE (C	JE): As	ssessme	nt is de	ised on	oral ex	amman	lon.						
Course	e Conte	nts:												
Experi	iment N	lo. 1: A	eration	l							2 Hours			
Learning Outcome: To determine the rate of aeration														
Experiment No. 2: Plain Sedimentation								2 H	lours					
Learning Outcome: To determine the effect of detention time on settling														
process	8													
Experiment No. 3: Coagulation and Flocculation									2 H	ours				

Learning Outcome: To determine the optimum dose of coagulant for given						
water						
Experiment No. 4: Filtration	2 Hours					
Learning Outcome: To determine the removal of turbidity from water after						
filtration						
Experiment No. 5: Head Loss in Filter	2 Hours					
Learning Outcome: To determine the Head Loss in Filter						
Experiment No. 6: Hardness Removal	2 Hours					
Learning Outcome: To determine the removal of Hardness by various						
processes						
Experiment No. 7: Break Point Chlorination	2 Hours					
Learning Outcome: To determine Break Point Chlorine dose for given						
water sample						
Experiment No. 8: UV Radiation	2 Hours					
Learning Outcome: To determine performance of UV radiation process						
Textbooks:	I					
1. Chemistry for Environmental Engineering and Science by Sawyer, McCarty and						
Parkin						
References:						
1. Standard Methods for examination of Water and Wastewater						
2. Manual of Water Supply and Treatment (3rd ed)- Ministry of Urban Development,						
New Delhi, 1991.						

Class: T. Y. B. Tech Environmental Engineering					L	Т	P		Cı	redit					
Title of	Title of the Course: Solid Waste Monitoring Laboratory				r 🗌			02 ho	ours		1				
Course	Course No.: UENV0532 per v						eek								
Course Pre-Requisite: Students shall have the knowledge of: Environmental Studies.								tudies.							
Course	Course Description:									• •					
The cot	irse expl	ores the	basic Ki	nowled	ge assoc	tated w	ith solid	waste	e con	iposit	ion, cha	aracte	risati	10n &	
identify	ing vorice	aures :	available	e lor e	evaluation of	on. Ine	e course	e imp	arts	the e	experim	lentai	SKI	as in	
Course		vos•		aracter		sonu w	asic.+								
Course 3	To carry	ves.	nrovim	ate ana'	lysis of (solid w	acte								
5.	To carry	7 out ult	imate an	ale ana alvsis c	nysis of a of solid y	waste	usic.								
Course	Learnir	ng Outc	omes:	urj bib c	JI BOIL	ii ustet									
course	2001111	ig oute	omest												
COs	After t	he com	pletion	of the	course 1	the stu	dents wi	ill be	able		Bloom	n's Cognitive			
	to										De	escrip	tor		
CO.1	Determ	ine the j	proxima	te analy	sis of sc	olid was	ste.				С	ogniti	ve		
											(Eval	uating	g) -L	.5	
CO.2	Determ	ine ultir	nate ana	lysis of	i solid w	aste.					C	ogniti	ve	_	
											(Eva	luatin	g)-L	5	
CO-PO	Manni	nσ·													
	1	2	3	4	5	6	7	8		9	10	11		12	
CO1	-	-		3	1	•	,			-	10				
CO2				3	1										
		1			4		1								
				(COs	PSO1	PSO2	2							
				(CO1	-	1								
	CO2 - 1														
Assessments :															
		Asse	essment					W	eight	tage (Marks))			
ISE 50															
		ES	E (OE)							25					
• ISE: Based on practical performed/ Quiz/ Mini-Project assigned/ Presentation/ Group															
Discussion/ Internal oral etc.															
• ESE (OE): Assessment is based on oral examination.															
Course Contents:															
Experiment No. 1: Study of Composition of solid waste by Quartering and							and	2	Hou	irs					
Coning Sampling Procedure:															
Learning Outcome: To investigate the composition by weight of solid waste.															
Experiment No. 2: Study of bulk density of solid waste							2	Hou	irs						
Learning Outcome: To determine density of solid waste.							2	Harr							
Experiment No. 5: Determination of molecure content.							Z	пои	.15						
Examing Outcome. To actermine the moisture content of solid waste.								2	Hou	irc					
Learning Outcome. To determine the particle size distribution							2	1100	15						
Experiment No. 5: Determination of calorific value							2	Hou	irs						
Learning Outcome: To determine the energy content of solid waste component (At							nt (At	-	1100						
least three) by using a laboratory bomb calorimeter.															
Experiment No. 6: Determination of proximate analysis								2	Ноп	irs					
Learning Outcome: To determine moisture loss, volatile matter, ash and fixed							fixed	_							

carbon in solid waste component (At least three).				
Experiment No. 7: Determination of Ultimate analysis	2 Hours			
Learning Outcome: To determine percent availability of carbon, nitrogen, sulphur				
& hydrogen in solid waste component (At least three).				
References:				
1. Integrated Solid Waste Management by Tchobanoglous/Theisen/Vigil; Publish	er: McGraw			
Hill				
2. CPHEEO Manual on Integrated solid Waste Management.				
3. Solid Waste Management – Dr. A. D. Bhide				
Class: T. Y. B. Tech Environmental Engineering Semester V	L	Т	Р	Credit
---	---	---	----------	--------
Title of the Course: Geotechnical Engineering Laboratory			02 hours	1
Course No.: UENV0533			per week	
Course Pre-Requisite:				
Students shall have the knowledge of:				
• Algebra and Engineering Mathematics				
Engineering Physics and Chemistry				
Engineering Mechanics				
Fluid Mechanics				

Course Description:

The course helps to develop laboratory skills as well as enhances analytical abilities by performing experiments pertaining to Geotechnical Engineering. The laboratory performance and work; helps to use theoretical concepts in practice, refer standard procedures and IS codes, measure parameters, make interpretations/ judgements and draw valid conclusions by using geotechnical engineering knowledge.

Course Objectives:

- 4. To introduce the students to laboratory methods for performing experiment in Geotechnical Engg.
- 5. To interpret observations/readings and draw conclusions.
- 6. To relate laboratory results to field conditions.

Course Learning Outcomes:

COs	After th	ne comp	pletion o	of the co	ourse th	ne studer	nts will	be able	to	Bloon	n's Cog intor	nitive
CO1	Explain properti	laborat es of so	ory meth il.	nods to	determi	ne Index	and Eng	gineerii	ng	Cogni (Unde L2	tive erstandin	lg)
CO2	Examin	e soil fo	or its suit	ability	as const	truction r	naterial.			Cogni (Analy L4	tive yzing)	
CO3	CO3Demonstrate the skills to perform experiments individually and in teams to lead to valid conclusionsPsychomotor (Set) L2											
CO-PC) Mappiı	ıg:				-						
CO	1	2	3	4	5	6	7	8	9	10	11	12
CO1				3	1					2		
CO2				3	1					2		
CO3				2	1				3	2		
COs PSO1 PSO2 CO1 - 1 CO2 - 1 CO3 - 1												
Assess	ments :											
Assessment ISE ESE (OE)							Weightage (Marks) 50 50					

 ISE: Based on practical performed/ Quiz/ Mini-Project assigned/ Presentation/ Discussion/ Internal oral etc. 	Group
• ESE (OE): Assessment is based on oral examination.	
Course Contents:	
Experiment No. 1: Specific gravity determination	
Learning Outcome:	2 Hours
Interpretation of specific gravity value of given soil and using it for	
classification of soil.	
Experiment No. 2: Water content determination	2 Hours
Learning Outcome:	
Determination of natural moisture content and evaluating status of soil.	
Experiment No. 3: Grain size analysis	2 Hours
Learning Outcome:	
Determination of gradation of soil and its classification	
Experiment No. 4: Consistency Limits of soil	2 Hours
Learning Outcome:	
Values of consistency limits help to comment on field behaviour of soil and its	
classification.	
Experiment No. 5: Field density determination.	2 Hours
Learning Outcome:	
Field density values help to estimate soil performance and strength.	
Experiment No. 6: Standard proctor compaction test.	2 Hours
Learning Outcome: Important parameter for earth work design and construction are	
determined for field compaction.	
Experiment No. 7: Demonstrations	6 Hours
Learning Outcome:	
Laboratory methods to determine parameters of soil to evaluate its strength are	
understood.	
TEXT BOOKS & REFERENCE BOOKS	
1. Text book of soil mechanics in theory and practice by Dr. Alam Singh(Asian Pu	blishing
House, Bombay)	
2. Soil mechanics and Foundation engineering by V.N.S.Murthy.(U.B.S. Publisher	rs and
distributors, Delhi	_
3. Soil mechanics and Foundation engineering by B. S. Punmia. (A Saurabh and C	ompany P.
Ltd., Madras)	
5. Geotechnical Engineering by P. Purushottam Raj.(Tata Mcgraw Hill Company I	Ltd. New
Delhi)	

7. Soil mechanics by Terzaghi and Peak. (John Willey and Sons, New- York)

8. Soil Testing by T.W. Lambe. (Willey Eastern Ltd., New Delhi)
 9. Geotechnical Engineering by Venkatramiah

Class: T.	Y. B. Te	ech Env	vironm	ental E	nginee	ring		L]		P	Credit	
Title of tl	ne Cours	se: Min	i Proje	ct Lab	oratory	y		-	-		2	1	
Course N	lo.: UEN	V0541											
Course P	re-Requ	isite:											
Students s	shall hav	e the kr	nowledg	ge of:									
• E	ngineerii	ng Phys	sics										
• A	lgebra a	nd Engi	ineering	g Mathe	matics								
l	-	-											
Course D	escripti	on:											
	_												
Course L	earning	Object	tives:										
1. T	o acquire	e knowl	ledge to	condu	ct resea	rch							
2. D	evelop e	xperim	ental se	t-up to	solve p	roblem	, do test	ting and	l valida	tion of th	ne results	5	
Course C	utcome	s:											
I													
COa	After t	the con	pletion	ı of the	course	e the stu	ıdents	will be		Bloom ³	's Cogni	tive	
COS	able to									Descriptor			
CO.1	Formu	late a	real	world	probl	em an	d dev	elop i	ts Co	Cognitive(Creat) L2			
	require	ements.			_			_		-			
CO.2	Develo	op a des	ign solı	ution fo	r a set o	of requi	rements	5	Co	gnitive(I	Develop)	L4	
CO.3	Test an	nd valid	ate the	conform	nance c	of the pi	oblem		Co	gnitive(H	Evaluatir	ıg) L5	
CO.4	Expres	s techr	nical id	eas, str	ategies	and m	nethodo	logies	in Co	gnitive(H	Evaluatir	ig) L5	
	written	and or	al form		C			U U					
	•								•				
CO-PO M	Apping	:											
COs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	
CO.1	1	-	-	-	-	-	-	-	-	-	-	-	
CO.2	1	_	_	_	_		_	_	_	_	_		
CO 3	2	_	_	-	_	_	_	_			_	-	
CO.3	2	-	-	-	-	-	-	-	-	-	-	-	

COs	PSO1	PSO2
CO.1	-	-
CO.2	-	-
CO.3	-	-
CO.4	-	-

_

_

Assessments :	
Assessment	Weightage (Marks)
ISE	25

ISE-1 and ISE-2: Assessment is based on the efforts by the students for formulating problem, developing design solution, testing and validation of the solution and presentation

Course Contents:

CO.4

1

_

Students are expressed to carry out independent research work on the given topic. It is expected that the student shall do the formulation of the small research problem, development/fabrication of experiment \al set-up (if any/ required) and testing and analysis of results thus obtained. The students are required to submit the report of mini project

SYLLABUS T. Y. B. Tech Environmental Engineering SEMESTER - VI

Title of the Course: Wastewater Engineering Course Code.:UENV0601 3 - 2019-20 Course Pre-Requisite: Students shall have knowledge of: • - 2019-20 Course Pre-Requisite: Students shall have knowledge of: • - 2019-20 Course Description: The course reviews collection and conventional treatment of municipal wastewater. Students design sewers and sewage pumping station. Students learn primary and secondary/biological treatment principles and processes. Management of sludge and disinfection of municipal effluents are also covered. This course prepares students for advanced wastewater treatment processes, including industrial wastewater, in further treatment courses. Course Objectives: During this course students will be provided with 1. To provide knowledge of sources and flowrates of wastewater treatment plants. 3. To inpart necessary skill for the design and operation of wastewater treatment plants. 3. To inpart necessary skill for the design and operation of wastewater treatment technology. Course Learning Outcomes: Course Learning Outcomes: Cognitive (Understanding) wastewater and treatmenttechnologies for wastewater C01 Explainwastewater collection system, characteristics of wastewater and treatmenttechnologies for wastewater Cognitive (Understanding) uastewater collection and treatment C02 Applythe knowledge of collection system, pollution control technologies, to solve/analyze the problems in uad wastewater treatment units. L5 (Creati	Class: T	.Y.B.Tech Environmental Engineering	L	Т	Р	Year			
Course Code::UENV0601	Title of t	the Course: Wastewater Engineering	3	-	-	2019-20			
Course Pre-Requisite: Students shall have knowledge of: • Environmental chemistry and microbiology Hydraulics and water supply engineering Course Description: The course reviews collection and conventional treatment of municipal wastewater. Students design sewers and sewage pumping station. Students learn primary and secondary/biological treatment principles and processes. Management of sludge and disinfection of municipal effluents are also covered. This course prepares students for advanced wastewater treatment processes, including industrial wastewater, in further treatment courses. Course Objectives: During this course students will be provided with 1. To provide knowledge of sources and flowrates of wastewater and Characteristic of Municipal waste water. 2. To impart necessary skill for the design and operation of wastewater treatment plants. 3. To introduce new developments in the field of wastewater treatment. 4. To prepare students for higher studies and research in the field of wastewater treatment technology. Course Learning Outcomes: CO1 Explainwastewater collection system, characteristics of wastewater and treatmenttechnologies for wastewater CO2 Applythe knowledge of collection system, pollution control technologies, to solve/analyze the problems in (Applying) wastewater collection and treatment CO3 Evaluate and Design wastewater collection system and wastewater treatment units. L5 (Course C	Code.:UENV0601							
Students shall have knowledge of: • Environmental chemistry and microbiology Hydraulics and water supply engineering Course Description: The course reviews collection and conventional treatment of municipal wastewater. Students design sewers and sewage pumping station. Students learn primary and secondary/biological treatment principles and processes. Management of sludge and disinfection of municipal effluents are also covered. This course prepares students for advanced wastewater treatment processes, including industrial wastewater, in further treatment courses. Course Objectives: During this course students will be provided with 1. To provide knowledge of sources and flowrates of wastewater and Characteristic of Municipal waste water. 2. To impart necessary skill for the design and operation of wastewater treatment plants. 3. To introduce new developments in the field of wastewater treatment. 4. To prepare students for higher studies and research in the field of wastewater treatment technology. Course Learning Outcomes: Co1 Explainwastewater collection system, characteristics of wastewater and treatmenttechnologies for wastewater CO2 Applythe knowledge of collection system, pollution cognitive (Understanding) wastewater collection and treatment CO3 Evaluate and Design wastewater collection system and wastewater collection system and wastewater treatment units. CO3 Evaluate and Design wastewater collection system and wastewater treatment units.	Course I	Pre-Requisite:							
 Environmental chemistry and microbiology Hydraulics and water supply engineering Course Description: The course reviews collection and conventional treatment of municipal wastewater. Students design sewers and sewage pumping station. Students learn primary and secondary/biological treatment principles and processes. Management of sludge and disinfection of municipal effluents are also covered. This course prepares students for advanced wastewater treatment processes, including industrial wastewater, in further treatment courses. Course Objectives: During this course students will be provided with To provide knowledge of sources and flowrates of wastewater and Characteristic of Municipal waste water. To impart necessary skill for the design and operation of wastewater treatment plants. To introduce new developments in the field of wastewater treatment. To prepare students for higher studies and research in the field of wastewater treatment technology. Course Learning Outcomes: Explainwastewater collection system, characteristics of wastewater and treatmenttechnologies for wastewater Cognitive (Understanding) usatewater collection and treatment Cognitive (Cognitive (Cognitive) (Applying) wastewater collection and treatment Cognitive (Evaluate and Design wastewater collection system and wastewater treatment units. 	Students	shall have knowledge of:							
Hydraulics and water supply engineering Course Description: The course reviews collection and conventional treatment of municipal wastewater. Students learn primary and secondary/biological treatment principles and processes. Management of sludge and disinfection of municipal effluents are also covered. This course prepares students for advanced wastewater treatment processes, including industrial wastewater, in further treatment courses. Course Objectives: During this course students will be provided with 1. To provide knowledge of sources and flowrates of wastewater and Characteristic of Municipal waste water. 2. To impart necessary skill for the design and operation of wastewater treatment plants. 3. To introduce new developments in the field of wastewater treatment. 4. To prepare students for higher studies and research in the field of wastewater treatment technology. Course Learning Outcomes: CO1 Explainwastewater collection system, characteristics of wastewater and treatmenttechnologies for wastewater Cognitive (Understanding) usatewater collection system, pollution control technologies, to solve/analyze the problems in (Applying) wastewater collection and treatment CO3 Evaluate and Design wastewater collection system and wastewater must. Cognitive (Evaluating) L5 (Creating) L6	• E	nvironmental chemistry and microbiology							
Course Description: The course reviews collection and conventional treatment of municipal wastewater. Students design sewers and sewage pumping station. Students learn primary and secondary/biological treatment principles and processes. Management of sludge and disinfection of municipal effluents are also covered. This course prepares students for advanced wastewater treatment processes, including industrial wastewater, in further treatment courses. Course Objectives: During this course students will be provided with 1. To provide knowledge of sources and flowrates of wastewater and Characteristic of Municipal waste water. 2. To impart necessary skill for the design and operation of wastewater treatment plants. 3. To introduce new developments in the field of wastewater treatment. 4. To prepare students for higher studies and research in the field of wastewater treatment technology. Course Learning Outcomes: CO1 Explainwastewater collection system, characteristics of wastewater and treatmenttechnologies for wastewater Cognitive (Understanding) L2 CO2 Applythe knowledge of collection system, pollution cognitive control technologies, to solve/analyze the problems in (Applying) wastewater collection and treatment L3 CO3 Evaluate and Design wastewater collection system and wastewater treatment units. Cognitive (Creating) L6		lydraulics and water supply engineering							
The course reviews concertoin and conventional dealitent of minincipal wastewater. Students design sewers and sewage pumping station. Students learn primary and secondary/biological treatment principles and processes. Management of sludge and disinfection of municipal effluents are also covered. This course prepares students for advanced wastewater treatment processes, including industrial wastewater, in further treatment courses. Course Objectives: During this course students will be provided with 1. To provide knowledge of sources and flowrates of wastewater and Characteristic of Municipal waste water. 2. To impart necessary skill for the design and operation of wastewater treatment plants. 3. To introduce new developments in the field of wastewater treatment. 4. To prepare students for higher studies and research in the field of wastewater treatment technology. Course Learning Outcomes: Cognitive Co1 Explainwastewater collection system, characteristics of wastewater and treatmenttechnologies for wastewater CO2 After the completion of the course the student Cognitive (Understanding) CO2 Explainwastewater collection system, characteristics of wastewater and treatmenttechnologies for wastewater Cognitive (Understanding) CO3 Evaluate and Design wastewater collection system and wastewater collection system and wastewater treatment units. Cognitive (Evaluating) L5 (Creating) L6	Course I	Jescription:	opt of a	municin	1 weete	water Studente			
treatment principles and processes. Management of sludge and disinfection of municipal effluents are also covered. This course prepares students for advanced wastewater treatment processes, including industrial wastewater, in further treatment courses. Course Objectives: During this course students will be provided with 1. To provide knowledge of sources and flowrates of wastewater and Characteristic of Municipal waste water. 2. To impart necessary skill for the design and operation of wastewater treatment plants. 3. To introduce new developments in the field of wastewater treatment. 4. To prepare students for higher studies and research in the field of wastewater treatment technology. Course Learning Outcomes: CO After the completion of the course the student should be able to Co1 Explainwastewater collection system, characteristics of wastewater and treatmenttechnologies for wastewater Cognitive (Understanding) L2 Applythe knowledge of collection system, pollution Cognitive (Understanding) L3 Cognitive (Evaluating) L3 C03 Evaluate and Design wastewater collection system and wastewater treatment units. L5 (Creating) L6 L5 (Creating) L6	design of	se reviews conection and conventional treatme		imory or	al waste	water. Students			
Interprese and processes. Management of studge and disinfection of infinitelial effluents are also covered. This course prepares students for advanced wastewater treatment processes, including industrial wastewater, in further treatment courses. Course Objectives: During this course students will be provided with 1. To provide knowledge of sources and flowrates of wastewater and Characteristic of Municipal waste water. 2. To impart necessary skill for the design and operation of wastewater treatment plants. 3. To introduce new developments in the field of wastewater treatment. 4. To prepare students for higher studies and research in the field of wastewater treatment technology. Course Learning Outcomes: Co After the completion of the course the student should be able to Col Explainwastewater collection system, characteristics of wastewater and treatment technologies for wastewater Co2 Applythe knowledge of collection system, pollution cognitive (Understanding) L2 wastewater collection and treatment L3 Co3 Evaluate and Design wastewater collection system (Evaluating) and wastewater treatment units. L5 (Creating) L6 L5	treatmen	t principles and processes. Management of s	sludge	and dis	infactio	n of municipal			
Course Objectives: During this course students will be provided with 1. To provide knowledge of sources and flowrates of wastewater and Characteristic of Municipal waste water. 2. To impart necessary skill for the design and operation of wastewater treatment plants. 3. To introduce new developments in the field of wastewater treatment. 4. To prepare students for higher studies and research in the field of wastewater treatment technology. Course Learning Outcomes: Col After the completion of the course the student should be able to Col Explain wastewater collection system, characteristics of wastewater and treatment technologies for wastewater Col Explain wastewater collection system, pollution cognitive control technologies, to solve/analyze the problems in (Applying) wastewater collection and treatment Co3 Evaluate and Design wastewater collection system and wastewater treatment units.	effluents	are also covered. This course prepares studen	studge	allu uis	d waste	water treatment			
Directives: Course Objectives: During this course students will be provided with 1. To provide knowledge of sources and flowrates of wastewater and Characteristic of Municipal waste water. 2. To impart necessary skill for the design and operation of wastewater treatment plants. 3. To introduce new developments in the field of wastewater treatment. 4. To prepare students for higher studies and research in the field of wastewater treatment technology. Course Learning Outcomes: Co After the completion of the course the student should be able to Cognitive Coll Explain wastewater collection system, characteristics of wastewater and treatment technologies for wastewater L2 Coll Applythe knowledge of collection system, pollution cognitive control technologies, to solve/analyze the problems in (Applying) wastewater collection and treatment L3 Coal Applythe knowledge of collection system, pollution cognitive (Evaluating) and wastewater treatment units. L3 Coal Applythe knowledge of collection system (Evaluating) and wastewater treatment units. Cognitive (Cognitive (Cognitive (Corating) L6 <td>nrocesse</td> <th>s including industrial wastewater in further trea</th> <th>atment (</th> <th>Courses</th> <th>u wasie</th> <th>water treatment</th>	nrocesse	s including industrial wastewater in further trea	atment (Courses	u wasie	water treatment			
During this course students will be provided with 1. To provide knowledge of sources and flowrates of wastewater and Characteristic of Municipal waste water. 2. To impart necessary skill for the design and operation of wastewater treatment plants. 3. To introduce new developments in the field of wastewater treatment. 4. To prepare students for higher studies and research in the field of wastewater treatment technology. Course Learning Outcomes: Co After the completion of the course the student should be able to Bloom's Co1 Explainwastewater collection system, characteristics of wastewater and treatment technologies for wastewater Cognitive (Understanding) L2 Co2 Applythe knowledge of collection system, pollution control technologies, to solve/analyze the problems in (Applying) wastewater collection and treatment L3 Co3 Evaluate and Design wastewater collection system and wastewater treatment units. L5 (Creating) L6	Course	hiertives		courses.					
During inits course students with be provided with 1. To provide knowledge of sources and flowrates of wastewater and Characteristic of Municipal waste water. 2. To impart necessary skill for the design and operation of wastewater treatment plants. 3. To introduce new developments in the field of wastewater treatment. 4. To prepare students for higher studies and research in the field of wastewater treatment technology. Course Learning Outcomes: Co After the completion of the course the student should be able to Bloom's Co1 Explain wastewater collection system, characteristics of wastewater and treatment technologies for wastewater Cognitive (Understanding) L2 Co2 Applythe knowledge of collection system, pollution control technologies, to solve/analyze the problems in wastewater collection and treatment L3 CO3 Evaluate and Design wastewater collection system and wastewater treatment units. L5	During th	nis course students will be provided with							
1. To provide and water of sources and nownees of water water that characteristic of Municipal waste water. 2. To impart necessary skill for the design and operation of wastewater treatment plants. 3. To introduce new developments in the field of wastewater treatment. 4. To prepare students for higher studies and research in the field of wastewater treatment technology. Course Learning Outcomes: Co After the completion of the course the student should be able to Bloom's Co1 Explain wastewater collection system, characteristics of wastewater and treatment technologies for wastewater Cognitive (Understanding) Co2 Applythe knowledge of collection system, pollution control technologies, to solve/analyze the problems in (Applying) wastewater collection and treatment L3 Co3 Evaluate and Design wastewater collection system and wastewater treatment units. L5 (Creating) L6 L5	1 T	o provide knowledge of sources and flowrate	s of w	astewate	r and C	haracteristic of			
2. To impart necessary skill for the design and operation of wastewater treatment plants. 3. To introduce new developments in the field of wastewater treatment. 4. To prepare students for higher studies and research in the field of wastewater treatment technology. Course Learning Outcomes: CO After the completion of the course the student should be able to Bloom's CO1 Explain wastewater collection system, characteristics of wastewater and treatment technologies for wastewater Cognitive CO2 Applythe knowledge of collection system, pollution control technologies, to solve/analyze the problems in wastewater collection and treatment L3 CO3 Evaluate and Design wastewater collection system and wastewater treatment units. L5 (Creating) L6 L5	I. I N	Aunicipal waste water	5 01 00		i una c				
 3. To introduce new developments in the field of wastewater treatment. 4. To prepare students for higher studies and research in the field of wastewater treatment technology. Course Learning Outcomes: CO After the completion of the course the student should be able to Bloom's CO1 Explain wastewater collection system, characteristics of wastewater and treatment technologies for wastewater CO2 Applythe knowledge of collection system, pollution cognitive (Understanding) wastewater collection and treatment L2 CO2 CO3 Evaluate and Design wastewater collection system (Evaluating) L5 (Creating) L6 	2. T	o impart necessary skill for the design and operation	ation of	wastew	ater trea	atment plants.			
4. To prepare students for higher studies and research in the field of wastewater treatment technology. Course Learning Outcomes: CO After the completion of the course the student should be able to Bloom's CO1 Explainwastewater collection system, characteristics of wastewater and treatmenttechnologies for wastewater Cognitive (Understanding) CO2 Applythe knowledge of collection system, pollution control technologies, to solve/analyze the problems in wastewater collection and treatment Cognitive (Applying) CO3 Evaluate and Design wastewater collection system and wastewater treatment units. Cognitive (Evaluating)	3. T	o introduce new developments in the field of wa	astewat	er treatm	nent.	······ F ······			
technology.Course Learning Outcomes:COAfter the completion of the course the student should be able toBloom'sCO1Explainwastewater collection system, characteristics of wastewater and treatmenttechnologies for wastewaterCognitive (Understanding) L2CO2Applythe knowledge of collection system, pollution control technologies, to solve/analyze the problems in wastewater collection and treatmentCognitive L3CO3Evaluate and Design wastewater collection system and wastewater treatment units.Cognitive L5 (Creating) L6	4. T	o prepare students for higher studies and resear	ch in th	ne field o	of waste	water treatment			
Course Learning Outcomes:COAfter the completion of the course the student should be able toBloom'sCO1Explain wastewater collection system, characteristics of wastewater and treatmenttechnologies for wastewaterCognitive L2CO2Applythe knowledge of collection system, pollution control technologies, to solve/analyze the problems in wastewater collection and treatmentCognitive L3CO3Evaluate and Design wastewater collection system and wastewater treatment units.Cognitive control technologies for system L3	te	echnology.							
COAfter the completion of the course the student should be able toBloom'sCO1Explain wastewater collection system, characteristics of wastewater and treatment technologies for wastewaterCognitive (Understanding)CO2Apply the knowledge of collection system, pollution control technologies, to solve/analyze the problems in wastewater collection and treatmentCognitive L2CO3Evaluate and Design wastewater collection system and wastewater treatment units.Cognitive (Evaluating)CO3Evaluate and Design wastewater collection system and wastewater treatment units.Cognitive (Evaluating)	Course 1	Learning Outcomes:							
COshould be able toDescriptorCO1Explain wastewater collection system, characteristics of wastewater and treatment technologies for wastewaterCognitive (Understanding) L2CO2Apply the knowledge of collection system, pollution control technologies, to solve/analyze the problems in wastewater collection and treatmentCognitive L2CO3Evaluate and Design wastewater collection system and wastewater treatment units.Cognitive (Evaluating) L5 (Creating) L6		After the completion of the course the stude	ent		Bl	oom's			
CO1Explain wastewater and treatment technologies for wastewaterCognitive (Understanding) L2CO2Apply wastewater and treatment control technologies, to solve/analyze the problems in wastewater collection and treatmentCognitive (Applying) L3CO3Evaluate and Design and wastewater treatment units.Cognitive (Evaluating) L5 (Creating) L6	CO	should be able to			Des	criptor			
CO1Explainwastewater collection system, characteristics of wastewater and treatmenttechnologies for wastewater(Understanding) L2CO2Applythe knowledge of collection system, pollution control technologies, to solve/analyze the problems in wastewater collection and treatmentCognitive L3CO3Evaluate and Design wastewater collection system and wastewater treatment units.Cognitive L3		E-mloin use to use to a callest is a system. shows at		-f	Co	gnitive			
CO2Applythe knowledge of collection system, pollution control technologies, to solve/analyze the problems in wastewater collection and treatmentL2CO3Evaluate and Design wastewater collection system and wastewater treatment units.Cognitive (Evaluating) L5 (Creating) L6	CO1	Explain wastewater collection system, character	eristics	01	(Unde	rstanding)			
CO2Applythe knowledge of collection system, pollution control technologies, to solve/analyze the problems in wastewater collection and treatmentCognitive L3CO3Evaluate and Design wastewater collection system and wastewater treatment units.Cognitive L5 (Creating) L6		wastewater and treatmenttechnologies for wast	tewater			L2			
CO2control technologies, to solve/analyze the problems in wastewater collection and treatment(Applying) L3CO3Evaluate and Design wastewater collection system and wastewater treatment units.Cognitive (Evaluating) L5 (Creating) L6		Applythe knowledge of collection system,	polluti	on	Co	gnitive			
wastewater collection and treatmentL3CO3Evaluate and Design wastewater collection system and wastewater treatment units.Cognitive (Evaluating) L5 (Creating) L6	CO2	control technologies, to solve/analyze the pro-	oblems	in	(Ap	plying)			
CO3Evaluate and Design wastewater collection systemCognitive (Evaluating) L5 (Creating) L6		wastewater collection and treatment				L3			
CO3Evaluate and Design wastewater collection system and wastewater treatment units.(Evaluating) L5 (Creating) L6					Co	gnitive			
and wastewater treatment units. L5 (Creating) L6	CO2	Evaluate and Design wastewater collection sy	ystem		(Evaluating)				
(Creating) L6	005	and wastewater treatment units.	-			L5			
					(Crea	ting) L6			

CO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	3	1				1						
CO2		3			1		2					
CO3	2		2									

CO	PSO1	PSO2
CO1	2	
CO2	2	
CO3		1

Assessments:		
Assessment	Weightage (Ma	rks)
ISE-1	10	
MSE	30	
ISE-2		
ESE		
• ISE-1 and ISE-2: Assessment is based on Assignment	nt/Declared Test/Quiz/	Seminar/Group
Discussions etc. (For each ISE two different tools are to b	be used).	\ \
• MISE: Assessment is based on 100% course content with 30% wei	abtage for course conte) nt covered
before MSE and 70% weightage for course content covered after 1	MSE.	in covered
Course Contents:		
Unit No. 1 Introduction, Quantity & Quality of Waste	ewater:	
Components of Wastewater Flows, Wastewater Sources &Fl	lowrate. Variations	5Hrs.
in Flowrates & Strength, Characteristics of Wastewater, Quar	ntity of	
Wastewater, Sewer Design Considerations- Minimum Size of	of Sewer. Limiting	
Velocities Peak Factor		
Sewage Pumping, Location, Capacity, Pumping Station Desi	ign	
Unit No. 2 Primary Treatment of Wastewater	8	5 Hrs.
Physical Unit Operations- Screening Grit Removal Oil &	& Grease Removal	•
Primary Sedimentation	2 Olease Rollio (ul,	
Unit No. 3 Secondary Treatment of Westewater		10 Hrs
Fundamentals of Biological Treatment Microbial Met	tabolism Bacterial	10 111 5.
Growth Suspended & Attached Growth Processes Activate	d Sludge Drocess &	
ite Modifications, Trickling Eilters, Secondary Clarification	A grated Lagoong	
Oridation Ditch WSD	i, Aeraled Lagoons,	
Unit No. 4 Anaerobic Treatment of Wastewater		6Hrs.
Anaerobic Suspended & Attached Growth Processes,	Factors affecting	
Anaerobic Processes, Anaerobic Lagoons, UASB, Septic	c Tank, Anaerobic	
Baffled Reactor		
Unit No. 5 Sludge Treatment		6Hrs.
Solid Sources, Characteristics & Quantities, Sludge Pumpi	ing, Introduction to	
mass balance approach, Treatment-Thickening, Stabilization	n, Design of Sludge	
Digester, Conditioning, Dewatering, Drying, Ultimate D	Disposal of Sludge	
Solids	ian agal of	9 II
Unit No. 0 Decentralized wastewater treatmentand D	isposal of	о пту.
Concert of decentralized westernater treatment systems		
Need of Disinfection Introduction to tertiary treatment		
Self-Purification of water bodies DO Sag Curve Street	ter Pheln's Model	
Stream Classification Effluent Standards for Discharge int	to Surface Water &	
on Land	o surrace water &	
Textbooks:		
1. Modi, P. N., "Wastewater Engineering," Standard Bo	ook House, 1st edition	n, 2001.
2. Manual on sewerage and sewage Treatment- Mini	stry of Urban Devel	opment, New
Delhi (CPHEEO)	-	• ´

References:

- 1. Metcalf & Eddy, Waste Water Engg. Treatment & Disposal, Tata McGraw Hill (2nd Edition)
- 2. Peavey, H.S.Rowe, D.R., and Tchobanoglous, Environmental Engineering,McGraw-Hill Book Company.
- 3. Hammer M.J. Water and Waste water Technology, Prentice-Hall of India P.Ltd.

Unit wise Measurable Students Learning Objectives and Outcomes:

- **ULO1:** Demonstrate scientific concepts and technical knowledge for determination of wastewater quality, design of collection system &domestic wastewater treatment, methods for: CO1, CO3
- **ULO2:** Demonstrate scientific concepts and detailed technical understanding of the technologies required for primary treatment of domestic wastewater and design of primary treatment units: CO1 & CO3
- **ULO3:** Demonstrate scientific concepts and detailed technical understanding of the technologies required for conventional biological wastewater treatment and their design: CO1 & CO3
- **ULO4:** Demonstrate scientific concepts and detailed technical understanding of the technologies required for anaerobic biological wastewater treatment and their design: CO1 & CO3
- **ULO5:** Demonstrate scientific concepts and detailed technical understanding of the technologies required for sludge treatment and their design: CO1 & CO4
- **ULO6:**Understand decentralized wastewater treatment plants and need for advance treatment, Determine wastewater quality fordischarging into rivers, it's effect on river water quality and environmental regulations for discharging treated wastewater: CO2, CO3

CourseCoursehemistrCoursehysicalnvironechnoloCourse1.1.2.1.2.1.1.2.1.1.1.2.1.1.2.1.1.2.1.2.1.2.1.2.1.2.1.2.1.2.1.2.1.1.2.1.2.1.2.1.2.1.2.2.3.3.3.4.3.3.3.3.3.3.3.3.3.3.3.3.3.3.3.4.3.3.4.	the Course: Air Pollution and Control Code: UENV0602 Pre-Requisite: Knowledge of engineering mathematics, phy y Description: As a comprehensive course, it introduces the so and chemical behavior of pollutants, the effects of air polluta- nent, and dispersion in the atmosphere . Also, it covers legi- gies and future trends toward preventing air pollution. Objectives: Know how to interpret meteorological data for atmospheric st ispersion of air pollutants resent detailed information about the theory, design and oper or particulate matter control. earn the concepts and strategies of control of gaseous polluta- dsorption, condensation etc.	3 ysics an ources of ants on islation tability, ration of ants, ind	- d Envi of air po human and reg transp f vario	ronmer ollution beings gulation portation ous equ	3 ntal n, s and n; cont n and ipment otion,	
Course hemistri Course hysical nvironn echnolo Course 1. H 2. H f 3. I a 4. C	Code: UENV0602 Pre-Requisite: Knowledge of engineering mathematics, phy y Description: As a comprehensive course, it introduces the so and chemical behavior of pollutants, the effects of air polluta- nent, and dispersion in the atmosphere . Also, it covers legi- gies and future trends toward preventing air pollution. Objectives: Know how to interpret meteorological data for atmospheric st ispersion of air pollutants tresent detailed information about the theory, design and oper or particulate matter control. earn the concepts and strategies of control of gaseous polluta- dsorption, condensation etc.	ysics an ources of ants on islation tability, tability, ration of ants, inc	d Envi of air po human and reg transp f vario	ronmer ollution beings gulation portation ous equ	ntal n, s and n; cont n and ipment otion,	
Course hemistric Course hysical nvironi echnolo Course 1. I 2. I 5 3. I 4. (Pre-Requisite: Knowledge of engineering mathematics, phy y Description: As a comprehensive course, it introduces the so and chemical behavior of pollutants, the effects of air polluta- nent, and dispersion in the atmosphere . Also, it covers legi- gies and future trends toward preventing air pollution. Objectives: Know how to interpret meteorological data for atmospheric st ispersion of air pollutants resent detailed information about the theory, design and oper or particulate matter control. earn the concepts and strategies of control of gaseous polluta- dsorption, condensation etc.	ysics an ources of ants on islation tability, ration of ants, ind	d Envi of air po human and re transp f vario	ronmer ollution beings gulation portation ous equ g adsorp	ntal n, s and n; cont n and ipment otion,	
hemisti Course hysical nvironi echnolo Course 1. H 2. H f 3. I a 4. C	Description: As a comprehensive course, it introduces the second chemical behavior of pollutants, the effects of air pollutanent, and dispersion in the atmosphere . Also, it covers leging is and future trends toward preventing air pollution. Objectives: Know how to interpret meteorological data for atmospheric strispersion of air pollutants bresent detailed information about the theory, design and oper or particulate matter control. earn the concepts and strategies of control of gaseous pollutants desorption, condensation etc. The most widely used commer	tability, ants, ind	of air po human and reg transp f vario	ollution beings gulation portation pus equ g adsorp	n, s and n; cont n and ipment otion,	
Course ohysical environn echnolo Course 1. H 2. H f 3. I a 4. (Description: As a comprehensive course, it introduces the so and chemical behavior of pollutants, the effects of air polluta- nent, and dispersion in the atmosphere . Also, it covers legi- gies and future trends toward preventing air pollution. Objectives: Know how to interpret meteorological data for atmospheric st ispersion of air pollutants Present detailed information about the theory, design and oper or particulate matter control. earn the concepts and strategies of control of gaseous polluta- dsorption, condensation etc.	tability, ants on islation tability, ants, inc	of air po human and re transp f vario	ollution beings gulation portation ous equ g adsorp	n, s and n; cont n and ipment otion,	
hysical environi course 1. H 2. H f 3. I a 4. Q	and chemical behavior of pollutants, the effects of air pollutanent, and dispersion in the atmosphere . Also, it covers legingies and future trends toward preventing air pollution. Objectives: Know how to interpret meteorological data for atmospheric strispersion of air pollutants Present detailed information about the theory, design and oper or particulate matter control. earn the concepts and strategies of control of gaseous pollutane dsorption, condensation etc. Fet an insight into the some of the most widely used commer	ants on islation tability, ration o ants, ind	human and reg transp f vario cluding	beings gulation portation pus equ g adsorp	n; cont n; cont n and ipment otion,	
1. H 2. H 3. I 4. C	Another the concepts and strategies of control of gaseous pollution. We concepts and strategies of control of gaseous pollution. We concepts and strategies of control of gaseous pollutation of the concepts and strategies of control of gaseous pollutation. We concept the concept of the most widely used comment of the concept of the some of the most widely used comment of the concept of the some of the most widely used comment of the concept of the some of the most widely used comment of the concept of the some of the most widely used comment of the concept of the some of the most widely used comment of the concept of the some of the most widely used comment of the concept of the some of the most widely used comment of the concept of the some of the most widely used comment of the concept of the some of the most widely used comment of the concept of the some of the most widely used comment of the concept of the some of the most widely used comment of the concept of the some of the most widely used comment of the concept of the some of the most widely used comment of the concept of the some of the most widely used comment of the concept of the some of the some of the most widely used comment of the concept of the some	tability, ration o ants, ind	transp transp f vario	portation portation pus equ g adsorp	n; cont n and ipment	
1. I 2. I 3. I 4. C	Objectives: Chow how to interpret meteorological data for atmospheric st ispersion of air pollutants Present detailed information about the theory, design and oper or particulate matter control. earn the concepts and strategies of control of gaseous polluta dsorption, condensation etc.	tability, ration o ants, ind	transp f vario cluding	portation pus equ g adsorp	n and ipment	
1. I 2. I 3. I 4. (Objectives: Know how to interpret meteorological data for atmospheric st ispersion of air pollutants resent detailed information about the theory, design and oper or particulate matter control. earn the concepts and strategies of control of gaseous polluta dsorption, condensation etc.	tability, ration o ants, ind	transp f vario cluding	portatio ous equ g adsorp	n and ipment otion,	
1. H 2. H f 3. I a 4. C	Know how to interpret meteorological data for atmospheric st ispersion of air pollutants resent detailed information about the theory, design and oper or particulate matter control. earn the concepts and strategies of control of gaseous polluta dsorption, condensation etc.	tability, ration o ants, ind	transp f vario cluding	portatio ous equ g adsorp	n and ipment otion,	
1. I 2. H f 3. I a 4. (ispersion of air pollutants resent detailed information about the theory, design and oper or particulate matter control. earn the concepts and strategies of control of gaseous polluta dsorption, condensation etc.	ants, ind	f vario	ous equ g adsorp	ipmen otion,	
2. H f 3. I 4. (Present detailed information about the theory, design and oper or particulate matter control. earn the concepts and strategies of control of gaseous polluta dsorption, condensation etc.	ration o ants, ind	of vario	ous equ g adsorp	ipmen otion,	
2. f f 3. I a 4. (or particulate matter control. earn the concepts and strategies of control of gaseous pollut: dsorption, condensation etc.	ants, ind	cluding	g adsorp	otion,	
3. I 2 4. (earn the concepts and strategies of control of gaseous polluta dsorption, condensation etc.	ants, ind	cluding	g adsorp	otion,	
4. (dsorption, condensation etc.	• 1		, and so I	,	
4. (Fet an insight into the some of the most widely used commen	• •				
		cial and	l freely	[,] availat	ble air	
C	uality models		5			
5. A	articulate current air pollution policies and measures for cont	trol of a	ir pollu	ution		
Course	Learning Outcomes:					
<u> </u>						
CO	After the completion of the course the student should be	Bloom's Cognitive				
~~ 1	able to	level	Desc	riptor		
CO1	Explain various air pollution problems and the role of	2	Expla	ain		
~~~	meteorology in transport of pollutants					
CO2	Use appropriate dispersion models to estimate air pollutant	3	Discu	uss		
<i></i>	concentrations					
CO3	Analyze the air pollution problems using the strategies,	4	Use			
COA	regulations and policies for management.	4				
CO4	Design equipment for control, and prevention of air	4	Design			
	pollution to with due consideration to economic,					
	environmental, social, ethical, health and safety aspects					
00 50						
CO-PO	Mapping:					
00			010	DO11	DO	

CO	PO1	PO2	PO3	PO4	PO5	<b>PO6</b>	<b>PO</b> 7	PO8	PO9	PO10	PO11	<b>PO12</b>
CO1		2										
CO2	2		1		3							
CO3		3				1						
CO4	2		3			2	1					

	CO	DCO1	DCO2	]				
	C01	<b>PSUI</b>	P502	-				
	COI	1						
	CO2		3					
	GOA			-				
	CO3	3						
	CO4		3					
Assessments ·								
Teacher Assessment:								
Two components of In Semester Eva	luation (	(ISE), On	e Mid Se	emester Examination (MS	E) and one			
End Semester Examination (ESE) ha	ving 209	%, 30% a	nd 50%	weights respectively.				
Assessment	0	Marks	5					
ISE 1		10						
MSE		30						
ISE 2		10						
ESE 50								
ISE 1 and ISE 2 are based on assigni	nent/dec	lared test	t/quiz/ser	minar/Group Discussions	etc.			
MSE: Assessment is based on 50% of	of course	content	(Normall	y first three Units)				
ESE: Assessment is based on 100%	course co	ontent wi	th60-709	% weightage for course co	ontent			
(normally last three Units) covered after MSE.								
Unit 1:Introduction to Air pollution								
Sources, types and effects of air po	ollution,	Measure	ement un	nits, Ambient air quality				
standards- national and international	l Curren	t scenario	o of air p	pollution at national and				
global scales, Green house effects,	acid rai	n and oz	one laye	r depletion, Heat island				
effect, Visibility, Photochemical read	ction				<i>(</i> <b>11</b>			
Unit 2:Meteorology and Air Pol	lution	Vind aires	lation	Wind ross discrem	6Hrs.			
Lapse rates Stability of atmosphere	Inversio	n and its	types D	wind rose diagram,				
Maximum Mixing Depth Cyclones	and antic	vilones	Precipits	ation & its relation to				
removal of air pollutants		yerones,	1 iccipiu					
Unit 3:Dispersion of Air Pollut	ants				8 Hrs.			
Gaussian dispersion model, point source, Line source, maximum ground level								
concentration, Determination of stack height, Plume Rise Box model, Introduction to								
AERMOD and other soft wares								
Unit 4. Air Quality management								
Unit 4:Air Quality management	tomobil	as and its	aantral	Alternative fuele air	7 Hrs.			
auglity index index air quality maniforing manyuras for effective control of sin								
quanty muex, muoor an quanty monitoring, measures for effective control of air								
pollution in India, International treaties for control and mitigation of, air pollution								
Unit 5:Control of Particulate Matter								
	-							
Sources and distribution of SPM, Terminal settling velocity, Particulate removal								

mecha	nisms, study of working principle and design of Particulate Control							
Equipments : - Settling chamber, Cyclone separator, Fabric filter, Electrostatic								
precip	itator, Wet collectors,							
TI		(II-m						
Unit 6	:Control of Gaseous pollutants	6 Hrs.						
Variou adsorp	is options for removal of gaseous pollutants- Principles of absorption and tion, condensation and combustion/ incineration gaseous pollutants, use of urners							
Textb	noks:							
1)	K. Wark, C.F. Warner & W.T. Davis Air Pollution Control: its Origin and Contro Addision-Wesley, (1998).	ol,						
2)	Stern A.C., "Air Pollution Vol. I and II", Allied Publishers Limited, 1st Edition,	1994.						
3)	2. Nevers N., "Air Pollution control Engineering" McGraw-Hill, New York, 2nd 1995	edition,						
Refere	ences:							
1.	1. Martin Crawford, "Air Pollution and Control", Tata McGraw Hill Publication, 1st Edition, 1976							
2.	2. Air Pollution and Control Technologies by Anjaneyulu, D", Allied Publishers, Mumbai,							
2	2002							
3.	3. Environmental Pollution Control Engineering by Rao, C.S., Wiley Eastern Ltd., New Delhi, 1996							
4.	Industrial Air Pollution Control Systems by W.L.Heumann, McGraw-Hill, New 1997	York,						
5.	Environmental Engineering by Peavy S.W., Rowe D.R. and Tchobanoglous G, I Hill, New Delhi, 1985	McGraw						
6.	Environmental Engineering Vol. II by Garg, S.K, Khanna Publishers, New Delh	i						
7.	<ol> <li>Fundamentals of Air Pollution by Richard W.Boubel, D.L.Fox, D.B.Turner&amp;A.C.Stern, Reed Elsevier India Pvt. Ltd., New Delhi,</li> </ol>							
Init v	vise Measurable students Learning Outcomes.							
At the	end of the course, the students will be able to							
UO1S	ummarize the various impacts of air pollution at national and global levels							
UO2	Describe the role of various meteorological parameters in dispersion of air pollu	itants						
UO3	Predict concentration of air pollutants using various dispersion models							
UO4	Assess the air quality status with respect to legal standards, and suggest							
U05	Design control equipments for removal of particulate matter							
U06	Describe principle of gaseous pollutants control							
	Deserve principle of gaseous pollutants control							

Г

Class: T.Y. B.Tech. Environmental Engineering	L	Т	Р	Year
Course No.: UENV0603	4	-	-	2018-19

Students shall have knowledge of:

- Algebra and Engineering Mathematics
- Engineering Mechanics
- Structural Mechanics
- Construction Technology

#### **Course Description:**

The course imparts fundamental knowledge on concepts of reinforced concrete, its design philosophies. An Environmental Engineer needs to understand the design of various structural members such as beams, slabs, columns of buildings, treatment plants, and storage tanks as well as apply checks for safety and serviceability. The knowledge of RCC sections is useful in estimating and costing also.

# **Course Objectives:**

- 9. To study concepts and design philosophies of RCC
- 10. To understand analysis and design of reinforced concrete sections
- 11. To know various checks for the designs.
- 12. To learn designs of specific RCC elements/structures.

#### **Course Learning Outcomes:**

CO	After the completion of the course the students will be	<b>Bloom's Taxonomy</b>		
CO	able to	Cognitive D	omain	
COI	Explain design philosophies and stress-strain behaviour of	Understandi	ng I 2	
COI	Reinforced Cement Concrete.	Understanding L2		
CO2	Apply concepts of design and analyse various RCC section.	Applying	L3	
CO3	Evaluate the design with respect to various checks.	Evaluate	L5	
<b>CO4</b>	Design specific structural element /component.	Creating	L6	

#### **CO-PO Mapping:**

CO	PO1	PO2	PO3	PO4	PO5	<b>PO6</b>	<b>PO7</b>	<b>PO8</b>	PO9	PO10	PO11	PO12
CO1	3	2	1	-	-	-	-	-	-	-	-	-
CO2	2	-	3	-	-	-	-	-	-	-	-	-
CO3	-	2	2	-	-	-	-	-	-	-	-	-
<b>CO4</b>	-	2	3	-	-	2	-	-	-	-	-	-

CO	PSO1	PSO2
CO1	-	-
CO2	-	2
<b>CO3</b>	_	2
<b>CO4</b>	-	2

Assessments :						
Assessment	Weightage					
ISE - I	10					
MSE	30					
ISE- II	10					
ESE	50					
Course Contents:						
Unit : 1: Introduction- Stress strain behavior of concrete and steel, Behavior of RCC, Permissible stresses in steel and concrete, Design philosophies, Various limits states, Characteristics strength and Characteristic load, Load factor, Partial safety factors.						
<b>Unit 2:</b> Limit state of collapse (flexure): Analysis and Design of Singly and Doubly Reinforced rectangular sections, Singly reinforced T beams.						
<b>Unit 3:</b> Limit state of collapse (shear and bond): Shear failure, Types of Shear reinforcement, Design of Shear reinforcement, Bond-types, Factors affecting bond Resistance, Check for development length. Limit state of serviceability: Significance of deflection, IS recommendations, Cracking-classification and Types of Cracks, Causes mechanism and IS recommendations.						
<b>Unit 4:</b> Design of slabs: One way, Two way with different support conditions as per IS:456, Cantilever slab. Design of staircases; Types of staircases, Design of Simply Supported and Dog legged staircases						
<b>Unit 5:</b> Analysis and Design of axially and eccentrically (uni-axial) loaded circular, rectangular columns, Interaction diagram, Circular column with helical reinforcement						
<b>Unit 6:</b> Design of water tank-design criteria, permissible stresses, design of circular water tank resting on ground with flexible and rigid base, design of rectangular water tank resting on ground by approximate method						
<ul> <li>Textbooks / Reference books:</li> <li>1 IS 456-2000</li> <li>2. Limit state theory and Design – Karve and Shal</li> <li>3. Reinforced Concrete Design – Limit state - A.I</li> <li>4. Fundamentals of Reinforced Concrete –Sinha a Ram Nagar, New Delhi</li> <li>6. Limit State Design of reinforced concrete P.C.</li> <li>7. Reinforced Concrete Design- B.C. Punmia Lax</li> <li>8. Reinforced Concrete Design-M. L. Gambhir-M</li> <li>9. Special publications -16-Bureau of Indian stan</li> </ul>	h, Structures publications , Pune K. Jain Nem Chand brothers Roorkee and Roy, S. Chand and company Ltd. Varghese, Prentice Hall, New Delhi kmi publications New Delhi Ic millan India Ltd. New Delhi dard					

# Unit wise Measurable, Students Learning Objectives and Outcomes:

Unit	Students Learning Outcomes				
1	Explain concepts, design philosophies of reinforced cement concrete				
2	Apply concepts for analysis and design of singly, doubly reinforce rectangular sections and flanged sections				
3	Analyze the section for shear and bond stress and design for it				
4	Explain concept of design of various types of slabs and staircase.				
5	Analyze and Design circular, rectangular columns and helical reinforcement				
6	Design of water tank as per design criteria, permissible stresses by approximate method				

Class: T.Y.B. Tech. Environmental Engineering Title of the Course: Environmental Geotechnology Course No.: UENV0621	L	Т	Р	Year
	3	1	-	2019-20

Students shall have knowledge of:

- Algebra and Engineering Mathematics
- Engineering Physics and Chemistry
- Engineering Mechanics
- Fluid Mechanics

## **Course Description:**

The course imparts knowledge of geotechnical aspects relevant to Environmental Engineering. Soil interaction with wastes, landfill compaction, stability analysis in changing environmental conditions, waste control systems and use of geosynthetics is dealt.

#### **Course Objectives:**

- 1. To provide students the necessary knowledge and concepts in the field of Subsurface Contamination, their effects, detection and remedial measures.
- 2. To familiarize the students with types and properties of geosynthetic materials, their use for various civil engineering functions in general and for solid/slurry waste containment in particular.

#### **Course Learning Outcomes:**

CO	After the completion of the course the will be able to	<b>Bloom's Taxonomy</b>		
CO	After the completion of the course the will be able to	<b>Cognitive Domain</b>		
C01	<b>Explain</b> and <b>Classify</b> various engineering properties of soils, available geosynthetic materials, their properties and suitability	Understanding L2		
CO2	Analyze stability of landfillsite	Analyzing L4		
<b>CO3</b>	Determine waste containment and barriers	Evaluating L5		

#### **CO-PO Mapping:**

CO	<b>PO1</b>	PO2	<b>PO3</b>	<b>PO4</b>	<b>PO5</b>	<b>PO6</b>	<b>PO7</b>	<b>PO8</b>	<b>PO9</b>	<b>PO10</b>	PO11	<b>PO12</b>
CO1	3	-	2	-	-	-	1					
CO2	1	3	-	2								
CO3	-	2	3	-			1					
<b>CO4</b>	-	2	3	-								

CO	PSO1	PSO2
<b>CO1</b>		-
CO2		-
<b>CO3</b>		2
<b>CO4</b>		2

#### Assessments :

Assessment	Weightage
ISE - I	10
MSE	30
ISE- II	10
ESE	50

Course Contents:	
<b>Unit 1:</b> Geoenvironmental Engineering- Introduction, overview of pollution, control and remediation,Soils- Soil as 'Phased System', Soil classification, Various Soil Types with important engineering properties, their suitability for intended purpose,Clay Minerology.	7Hrs.
Unit 2: Soil-water-contaminant interaction; Contaminant Transport, Geochemical Attenuation and attenuation capacity of soils. Zones of contaminant plume. Introduction to Detection of polluted zones and Monitoring designed system.	5 Hrs.
<b>Unit 3:</b> Various forms of Geosynthetic material (GM, GT, GN, GG, GCL, GP, Geofoam etc.) and their general applications for various engineering functions. Various Geosynthetic material properties. Use of Geosynthetic material in waste containment. Concerns about use.	6 Hrs.
Unit 4: Solid Waste Containment: Site selection, Typical cross sections of landfills, merits and demerits. Area calculation of landfill site. EPA (MoEF and CPCB) Guidelines.CCL, GCL and composite liners. Compaction quality control. Stability analysis of Landfills: Conventional Slope Stability analysis by method of slices, stability number concept. Stability against sliding of geomembrane over clay (liner stability) and sliding of soil over geomembrane (Cover stability). Assessment of anchorage requirement of GM.	12 Hrs.
Unit 5: Slurry Waste Containment: Slurry transported wastes, pond layouts, components of pond, embankment construction, staged raising of embankment, Design aspects, environmental impact and control. Vertical Barriers for Containment: Various types of Cutoff Walls, Requirements of good vertical barriers, Slurry trench walls using Bentonite and Cement- bentonite slurry, material and construction aspects.	5 Hrs.
<b>Unit 6 :</b> Geotechnical Reuse of waste material: Waste reduction, use of waste in geotechnical construction, Waste characteristics for soil replacement, Transport considerations, and engineering properties of waste.	5 Hrs.
<ol> <li>Textbooks:         <ol> <li>G L SivakumarBabu, "Soil Reinforcement and Geosynthetics", Universities Press (Hyderabad, 2006.</li> <li>S.K.Gulhati, ManojDatta, "Geotechnical Engineering", Tata McGraw Hill, New Del 3. Braja Das, "Principles of Geotech. Engg", Thomson Asia Pvt. Ltd, 5th Edition, 2002. Fang, H.Y, "Introduction to Environmental Geotechnology", CRC Press, 1997.</li> </ol> </li> <li>Reference books:</li> </ol>	India) Pvt I hi, 2005.
<ol> <li>Donald Coduto, "Geotechnical Engineering Principles and Practices Prentice Ha Pvt. Ltd, New Delhi, 2002.</li> </ol>	all of India

2. Daniel, D. E, "Geotechnical Practice for Waste Disposal", Chapman and Hall, 1993. Koerner, R.M., "Designing with Geosynthetics", Fifth Edition, Prentice Hall, New Jersey, 2005.

# Unit wise Measurable Students Learning Objectives and Outcomes:

**Unit 1: Explain and Appraise** the environmental and health related risks, **List and describe** soil properties and behaviour, **Understand** soil-water-contaminant interaction.

Unit 2: Classify and compare plume transport

Unit 3: Describe and Differentiate various available geosynthetic materials. Compare their suitability for general engineering functions.

Unit 4: Design liner and cover system, **Perform** area calculations for landfill site, slope stability analysis and stability of liner-cover system.

Unit 5: Explain and Choose methods of slurry waste containment, Explain methods of vertical barriers.

Unit 6: Examine and Assess reuse of waste material.

Class: T. Y. B.Tech Environmental Engineering	L	Т	Р	Credits
Title of the Course: Optimization Techniques (PE-III)	3	1	-	4
Course No.: UENV0622				

Students must have knowledge about numerical and mathematical rules and its use in solving problems by correlating constants and parameters with each other.

# **Course Description:**

Optimization Techniques course deals with various methods used for determining the optimum solution in engineering & project management field. It covers the methodology of operation research and its applications in different fields. Various optimization techniques covered in the course are Linear Programming Problems, Job Sequencing, Transportation & Assignment Models, CPM & PERT for project management etc.

# **Course Objectives:**

- 1. Understand the significance and scope of optimization in Environmental engineering.
- **2.** Study the formulation by correlating parameters of technical, engineering problem in mathematical model.
- **3.** Learn to solve transportation problems, Assignment problems, Job sequencing using modified techniques.
- **4.** Study numerical techniques and genetic algorithm techniques for application in projects of Environmental Engineering to get optimum results.

# **Course Learning Outcomes:**

	After the completion of the course the student	Bloom's	Level
CO	should be able to	Descriptor	
CO 1	Explain significance and concepts of Optimization Techniques in Environmental Engineering.	Cognitive	Understanding L2
CO 2	Apply the optimization techniques for Linear Programming Problems of profit maximization and waste minimization.	Cognitive	Apply L4
CO 3	Evaluate Transportation Problems, Assignment Problems and Job Sequencing problems.	Cognitive	EvaluateL5
CO 4	Adapt appropriate method of numerical differentiation and integration for Environmental engineering problems.	Cognitive	Create L6

# **CO-PO Mapping:**

Course Outcomes		Program Outcomes											Prog Speci Outc	ram ific omes
	1	2	3	4	5	6	7	8	9	10	11	12	1	2
CO1	1	1			1				1					
CO2	2		1											
CO3		2		2				1				1		1
CO4							2				1		2	2

ssessments :							
Assessment	Weightage (Marks)						
ISE-1	10						
MSE	30						
ISE-2	10						
ESE	50						

• **ISE-1 and ISE-2:** Assessment is based on Assignment/Declared Test/Quiz/Seminar/Group Discussions etc. (For each ISE two different tools are to be used).

- MSE: Assessment is based on 50% of course content (Normally first three Units)
- **ESE:** Assessment is based on 100% course content with 30% weightage for course content covered before MSE and 70% weightage for course content covered after MSE.

Course Contents:	
Unit 1: Introduction:	
Birth of O. R., Methodology, Scope and Limitations. Types of O.R. Models,	4 Hrs.
Applications, Use of computers in O R	
Unit 2: Linear Programming	8 Hrs.
Formulation, graphical method, Simplex algorithm for maximization and	
minimization problems, sensitivity analysis, duality theory and its use in economic	
interpretation and decision making.	
Unit 3: Non-linear Programming	8 Hrs.
Non-linear Programming: Unconstrained optimization techniques, Classification of	
methods, steepest ascent, Newton method, constrained optimization, Separable and	
quadratic programming.	
Dynamic Programming	
Dynamic Programming: Multistage decision process, recursive relationships,	
Principle of optimality, Computational procedure in DP, DP applications, Problem	
of dimensionality.	
Unit 4: Transportation and Assignment Models	4 Hrs.
Structure, industrial and business applications.	
Transportation problems: Use of various methods for solving transportation	

problems, degeneracy and its solution.	
Assignment problems: Solution of various types of problems, Traveling Salesman	
problem. Sequencing: Sequencing of n jobs and 2 and 3 machines. 2 jobs and m machines	
Sequencing. Sequencing of it jobs and 2 and 5 machines, 2 jobs and in machines.	
Unit5: Numerical differentiation and Numerical integration	8 Hrs.
Numerical differentiation and Numerical integration: Numerical solution of	0 01
ordinary differential equation, Systems of ordinary differential equations, Runge –	
Kutta Method, Trapezoidal rule, Simpson's rule, Gauss – Siedel method, Jacobian	
method	
	0.11
Unit 6: Genetic Algorithm	8 Hrs.
Genetic Algorithm, Neural Networks and Fuzzy Systems: Introduction,	
Representation of decision variables, Objective function and constraints, GA	
operators, neural network based optimization, Optimization of fuzzy systems.	
Replacement Analysis: With & without time value of money, single item and	
group replacement.	
Textbooks:	
1. Operations Research – Hira & Gupta.	
<b>2.</b> Introduction to O.R., 6/e (with floppy disk) – Hamdy A. Taha, (PHI)	
<b>References:</b>	
2 Operations Research – I.K. Sharma (Mac Millan)	
3. Operations Research – S.D. Sharma	
4. Optimization in Operation Research – Ronald L. Rardin (Pearson education)	
5. Quantitative Techniques in Management, 2/e - N.D. Vora. (TMH)	
6. Genetic algorithm – Goldberg	
Unit wise Measurable students Learning Outcomes: Students will.	2000
Chit-1 Explain significance of optimization in Environmental Engineering. CO1, CC	<i>1</i> 2, CO3
Unit-2 Formulate practical situations and problems in mathematical model and find t	heir
solutions. CO1, CO2	
Unit-3 Apply non-linear programming and dynamic programming for environmental	l
engineering problems. CO3	
<b>Unit-4</b> Apply effective and economic transportation model for solid waste managem	ent and
assignment problem. Develop job sequencing model to get optimum efficiency. CO4	
<b>Unit-5</b> Use numerical integration and differentiation techniques for environmental tr	eatment
projects. CO4	
Unit-6 Develop genetic algorithm for neural network based optimization problems (	' <b>O</b> 4
Come o Develop genetic algoritanii for neural network based optimization problems.	

Class: T. Y. B. Tech Environmental Engineering	L	Т	Р	Credit
Title of the Course: Operation and Maintenance of	03 hours	01	-	4
Environmental Facilities	per week			
Course No.: UENV0623				
Course Pro-Requisite:				

• Students shall have knowledge of Water Supply Engineering.

• Students shall have knowledge of Wastewater Engineering.

• Students shall have knowledge of Air Pollution and Control.

# **Course Description:**

Operation and Maintenance of Environmental Facilities deals with the operation of environmental facilities like water supply facilities, water treatment plants, water distribution systems, wastewater treatment plants, wastewater collection systems, air pollution control equipments and their maintenance.

#### **Course Learning Objectives:**

At the end of course students will

1. Know the necessity of maintenance of environmental facilities.

2. Study measures to avoid failures in pipe systems.

3. Understand the criteria of operation & its purpose for water treatment plants, wastewater treatment plants and air pollution control equipments.

4. Learn the importance of planning and scheduling in maintenance activities.

Course (	Jutcomes:	
COa	After the completion of the course the students will be	<b>Bloom's Cognitive</b>
COS	able to	Descriptor
CO1	Explain the necessity of maintenance, planning and	Cognitive
	scheduling.	(Understanding)
		L 2
CO2	Illustrate the operation and maintenance requirements of	Cognitive
	air pollution control equipments.	(Understanding)
		L 2
CO3	Select the appropriate remedies for problems in	Cognitive
	transmission pipes, water treatment plants and	(Applying)
	wastewater treatment plants.	L 3

**CO-PO Mapping:** 

COs	PO1	PO2	PO3	PO4	PO5	<b>PO6</b>	<b>PO7</b>	<b>PO8</b>	PO9	PO10	PO11	PO12
CO1									2		2	
CO2		2							2		2	
CO3		2							2		2	

COs	PSO1	PSO2
CO1		
CO2	2	
CO3	2	

#### Assessments :

Assessment	Weightage (Marks)
ISE-1	10
MSE	30
ISE-2	10
ESE	50

<ul> <li>Test/Quiz/Seminar/Group Discussions etc. (For each ISE two different tools are to be used).</li> <li>MSE: Assessment is based on 50% of course content (Normally first three Units)</li> <li>ESE: Assessment is based on 100% course content with 30% weightage for course content covered before MSE and 70% weightage for course content covered after MSE.</li> </ul>
<ul> <li>MSE: Assessment is based on 50% of course content (Normally first three Units)</li> <li>ESE: Assessment is based on 100% course content with 30% weightage for course content covered before MSE and 70% weightage for course content covered after MSE.</li> <li>Course Contents:</li> </ul>
<ul> <li>MSE: Assessment is based on 50% of course content (Normally first three Units)</li> <li>ESE: Assessment is based on 100% course content with 30% weightage for course content covered before MSE and 70% weightage for course content covered after MSE.</li> </ul> Course Contents:
<ul> <li>ESE: Assessment is based on 100% course content with 30% weightage for course content covered before MSE and 70% weightage for course content covered after MSE.</li> <li>Course Contents:</li> <li>Unit 1: Introduction</li> </ul>
Course Contents:
MSE. Course Contents:
Course Contents:
Unit 1. Introduction Need of O and M Types of Maintenance Corrective and Preventive Deter 04 Urg
Detailed Plans, Drawings, Operation Manuals, Log Books, Computer Usage in
O and M
Unit 2: Water Intakes and Water Treatment Plant 08 Hrs
$\Omega \& M$ of Water Supply Facilities: Intakes Pumps Transmission Pipes Water
Treatment Units Maintenance Quantity and Quality Monitoring
Unit 3: Water Distribution Systems 08 Hrs
Water Distribution Systems Maintenance of Water Distribution System:
Reservoirs, Loss of Carrying Capacity of Pipes, Pipe Breaks & Leakages, O and
M of Appurtenances - Pipe Joints, Water Meters, Energy Audit, Use of SCADA
and PLCs.
Unit 4: Wastewater Treatment Facilities 08 Hrs.
O & M of Wastewater Facilities: Sewerage System and Appurtenances,
Inspection Methods, Manual and Television, Cleaning and Rehabilitation, Safety
in Sewer Inspection, O and M of Wastewater Treatment Plant- Activated Sludge
Process, Bio Towers, Monitoring and Operational Problems, Corrective
Measures, Treatment Plant Performance Monitoring,
Unit 5: Air Pollution Control Facilities 08 Hrs.
Air Pollution Control Facilities: Regular Inspection of Devices, Operation and
Maintenance of Particulate Matter Control Equipments, Gravity Settlers,
Cyclone Separators, Bag Filters, Scrubbers, Electrostatic Precipitator.
Unit 6: O & M Planning 04 Hrs.
O and M planning: Organizational Structure, Work Planning, Preparation and
Scheduling, Inventory, Cost Estimates, Wastewater Treatment Plant Staff
Training
Textbooks:
1. CPHEEO manual on Water Supply and Treatment
2. CPHEEO manual on Sewerage and Sewage Treatment
3. A manual on Operation and Maintenance of Water Supply Systems by CPHEEO
4. Air Pollution M N Rao, H V N Rao
Kelerences: 1. Industrial Air Dollution Control Systems – Noumann
1. Industrial All Pollution Control Systems – Neumann 2. O. & M. of Water treatment plant. Charles P. Cov.
2. O & M Of Water iteration and Maintenance of Effluent Treatment Plants by MPCB
Unit wise Measurable students Learning Outcomes:
At the end of course students will be able to
1.1: Define Corrective and Preventive Maintenance.
1.2: Explain the need of Operation Manuals in maintenance.
2.1: Summarize the maintenance activities of pumps at water intakes.
2.2: Explain the operation and maintenance of water treatment units.

3.1: Interpret the functions of appurtenances in Water Distribution System.

3.2: Summarize the causes of failures and preventive measures for pipelines.

4.1: Recall the measures for maintenance of wastewater treatment plants.

4.2: Explain the functional requirements of advanced wastewater treatment methods.

5.1: Explain the mechanism of pollutant removal in air pollution control equipments.

5.2: Illustrate the maintenance of air pollution control equipments.

6.1: Tell the necessity of planning, scheduling, inventory control in maintenance of treatment plants.

6.2: Plan the scheduling of maintenance activities.

Class:	T. Y. B. Tech Environmental Engineering	L	Т	P	Credit
Title of	f the Course: Environmental Laws and Policies	2	1	-	3
Subjec	t Code : OEL0631				
Course	e <b>Pre-Requisite</b> Students must have knowledge of				
Course	Description:				
Studen policies various & their	ts will learn various international environmental policies & o s. They will also learn various international environmental le s environmental legislation of Govt. of India. Importance of er functions. Environmental ethics & its importance role of NG	compa egislat ivironi O's.	re the ion. T nenta	em with They w l organ	h Indian ill learn iizations
Course	e Objectives:				
1.	To explain scope & need of Environment Legislation.				
2.	To discuss historical prospective & International environmen coventions.	tal legi	slatio	n &	
3.	To teach the various Acts in India related to Environment.				
4.	To elaborate risk associated and importance of economics for components.	• enviro	onmer	ntal	
Course	e Learning Outcomes:				
СО	After the completion of the course the student should be able to	e I	Bloom Di	s Cog scripto	nitive or
	Explain need & scope of environmental legislation.		Co	ognitiv	ve
CO1		U	nders	standi	ng- L2
CO2	Summarize historical prospective & international environmental legislation & conventions.		C	ognitiv	ve
		U	nders	standi	ng- L2
	Make use of environmental laws in practical applications.		C	ognitiv	'e
CO3			Арр	lying -	- L3
	Examine the risk associated and importance of economics fo	r	Co	ognitiv	ve .
CO4	environmental components.		Anal	yzing -	- L4
		<b>I</b>			

CO	<b>PO1</b>	PO2	PO3	<b>PO4</b>	PO5	<b>PO6</b>	<b>PO7</b>	<b>PO8</b>	<b>PO9</b>	<b>PO10</b>	PO11	<b>PO12</b>
CO1		1				2						
CO2						2						
CO3						2						



#### Assessments :

**Course Contents:** 

Assessment	Weightage (Marks)
ISE I	10
ISE II	10
MSE	30
ESE	50

- **ISE-1 and ISE-2:** Assessment is based on Assignment/Declared Test/Quiz/Seminar/Group Discussions etc. (For each ISE two different tools are to be used).
- MSE: Assessment is based on 50% of course content (Normally first three Units)
- **ESE:** Assessment is based on 100% course content with 30% weightage for course content covered before MSE and 70% weightage for course content covered after MSE.

#### Unit 1: 7 Hrs. Introduction, Need and Necessity, Basic information, Various five year plans and the provision for environment in these plans, Various environmental policies like National plan for cause of aquatic ecosystem, Sustainable developmental policy, National forest policy, and other policies related to environment. Unit 2: 5 Hrs. Historical development of various environmental legislations, USEPA 1969, Clean Air Act, Clean Water Act, NEPA. Unit 3: 7 Hrs. Water (Prevention & Control of Pollutants act), 1974 and Rules, Water Cess Act and Rules, Air (Prevention & Control of Pollutants act), 1981 and Rules, Indian Forest Act and Rules. Unit 4: 7 Hrs. Environmental Protection Act 1986 and Rules, EIA notification and procedure, Rules under EPA. Present status of these rules in India.

Unit 5:	5 Hrs.
Functions and powers of ministry of Environment and forest and pollution	
control Boards in centre and state, Energy Bureau of India, energy audit,	
Environmental audit, National River action Plan, National Lake action Plan.	
Unit 6:	7 Hrs
Case studies of various landmark judgments in Environmental field Critical	/ 1115.
Evaluation of current environmental Risk Policy, Environmental Management plans	
at centre and state. Environmental Economics, Basic concepts in economics, Green	
rating of industries.	
1) Environmental Planning and Management in India - Saxena	
2) Introduction to Environmental Law - Shantakumar S.	
3) International environmental Law - Lakshman	
4) Environmental Policies in India – Singh Shekhar	
References:	
1) All Environmental Legislations, amendments, rules Published by Ministry of Envir	ronment
and Forest, Govt of India 2) Handbook of Environmental Law, Acts, Guidelines, Compliances and Standards V.	al I II
Trivedi R.K.	01. 1, 11 -
Unit Outcomes (UOs)	
Unit 1. Impart their knowledge in Understanding The working of NITL Avog/ Plannir	וס
Commission. (CO1)	6
Unit 2. Indeptify the reason behind implementation of Eveny Environmental	
Legislation (CO1 CO2)	
Unit 3: Implement procedures for Various Environmental Laws in India.(CO3)	
Unit 3: Implement procedures for Various Environmental Laws in India.(CO3)	
Unit 4: Able to Identify Functions & Powers of Various Controlling Bodies.(CO3)	
Unit 5: Able to Convey the judgments of landmark cases related to Environment.(CO	3, CO4)

Class: T	Y. B. Tech Environmental Engineering	L	Т	Р	Year					
Title of	the Course: Occupational Health and Safety		-	-	<u>I cui</u>					
Course	No.: OEL0632	2	1							
Course	Pre-Requisite:									
There is	s no any pre-requisite for this course.									
Course	Description:									
Introduc	Introduction Concept and Need of Safety, Safety and Industries, Introduction to Risk									
Assessment & Management, Safety Management Systems, Accidents in Industries,										
Occupational Health and Industrial Hygiene, Various Preventive Methods for Occupational										
Health Problems, Introduction to legal aspects of Safety, Safety in Engineering industries										
Course	Objectives:									
At the e	nd of the course students will able to,									
1.	Understand concept and need of safety in industries									
2.	Study various safety management systems, OSHAS 180	01 mar	nageme	nt syst	em					
3.	Study cause and impact of accidents									
4.	Study accident prevention techniques									
5.	Study industrial hygiene and occupational disease.									
Course	Learning Outcomes:									
CO	After the completion of the course the student should	ld be		Bloom	1'S					
0	able to		Ι	Descrip	otor					
CO1	Identify issue related to health and safety in va	rious	(	Cognit	ive					
	industries									
CO2	Design and implement various safety management sys	stems	(	Cognit	ive					
	and OSHAS 18001 management systems for industrie	S								
CO3	Investigate and report accidents as well as corre	ctive	(	Cognit	ive					
	actions									
<b>CO4</b>	Identify and suggest corrective actions for problems re	lated		Cognit	ive					
	to industrial hygiene.									

# **CO-PO Mapping:**

		8										
CO	<b>PO1</b>	<b>PO2</b>	PO3	<b>PO4</b>	<b>PO5</b>	<b>PO6</b>	<b>PO7</b>	<b>PO8</b>	<b>PO9</b>	PO10	PO11	<b>PO12</b>
CO1						2						
CO2			3									
CO3	2											
<b>CO4</b>					3							

CO	PSO1	PSO2
CO1	2	
CO2	2	
CO3	3	1
CO4	3	1

Assessments :

Direct Assessment	Weightage
ISE-1	10
MSE	30
ISE-2	10
ESE	50

- **ISE-1 and ISE-2:** Assessment is based on Assignment/Declared Test/Quiz/Seminar/Group Discussions etc. (For each ISE two different tools are to be used).
- MSE: Assessment is based on 50% of course content (Normally first three Units)
- **ESE:** Assessment is based on 100% course content with 30% weightage for course content covered before MSE and 70% weightage for course content covered after MSE.

Course Contents:	
Unit - 1	
Safety - Concept and Need of Safety, Safety and Industries - Definition, Various	10
Hazards in Industries, Need of Industrial Safety, Safety Department and its Role	
Unit – 2	
Introduction to Risk Assessment & Management, Safety Management Systems,	5
OSHAS 18001 management system and Auditing, , Product Safety	
Unit – 3	
Accidents in Industries, Definition and Various Causes, Accident Theory, Cost of	5
Accidents, Accident Prevention Techniques, Accident Investigation and	5
Reporting, Accident Statistics	
Unit – 4	
Safety in Industries-, Safe Design and Layout of Plants and Equipments, Machine	6
Guarding, Safe Storage & Handling of Hazardous chemicals, MSDS, Good House	0
Keeping	
Unit – 5	_
Job Safety Analysis, Safety Checklists, Safety Inspections, Confined Space Entry,	7
Work Permit System, Lock Out- Tag Out System	
Unit_6	
One-o	
Chronic and Acute Effects Various Limits of Exposure LD50 LC50	7
TI V(TWA) STEL OSHA Limits etc. Effects of Various Physical Chemical and	/
Biological Hazards Present in Industries on Human Health	
Unit No 7	
Various Occupational Diseases and Causative Agent Occupational Diseases in	6
Various Industries Various Personal and Work Place Monitoring Systems	0
Unit No 8	
Various Preventive Methods for Occupational Health Problems Protection of	
Workers against Harmful Agents and Conditions LEVs PPEs Ergonomics	6
Health Monitoring and Medicine	
Unit No 9	
Legal aspects of Safety. Safety in Engineering industries. Chemical industries	5
Construction industries. On site & Off site Emergency Management Plan	-
Textbooks:	
1. Occupational Safety and health -by David L. Goetsch, Prentice Hall, Ohio	

- 2. Safety manual EDEL Engineering consultancy Pvt. Ltd.
- 3. Hazardous Material and Hazardous Waste management by Gayle Woodside, John Wiley & sons Inc.
- 4. Environmental Health and Safety Auditing Handbook by Lee Harrison, Mac Graw Hill Inc.
- 5. Health Hazards of the Human Environment World Health Organization , Geneva, 1972
- 6. Textbook of Preventive and Social Medicine by K. Park, Banarsidas Bhanot Publishers.
- 7. Industrial and Occupational Safety, Health & Hygiene by Dr. A.H. Hommadi
- 8. Introduction to Industrial Safety by K.T. Kulkarni

### **References:**

- 1. Occupational Safety and health -by David L. Goetsch, Prentice Hall, Ohio
- 2. Safety manual EDEL Engineering consultancy Pvt. Ltd.
- 3. Hazardous Material and Hazardous Waste management by Gayle Woodside, John Wiley & sons Inc.

# Term work:

- A Journal consisting of the following practicals and assignments based on theory
- 1. At least six assignments based on above theory
- 2. At least one industrial visit report on
- a) Industrial Safety b) Occupational Health

# Unit wise Measurable Students Learning Objectives and Outcomes:

- ULO 1 Discuss Need of Safety, Safety and Industries along with the role of supervisor as per OSHAS 18001 (CO1, CO2)
- ULO 2 Explain various safety management systems along with risk assessment ( CO1, CO 3)
- ULO 3 Explain Accidents in Industries, Definition and Various Causes.(CO3,)
- ULO 4 Describe various Safe Design and Layout of Plants and Equipments (CO2,CO3,CO4)
- ULO 5 Discuss various Safety Analysis and various theories to access the risk and its impact (CO3, CO4)
- ULO 6 Explain the Occupational Health and Industrial Hygiene in industries (CO4, CO2)
- ULO 7 Explain various occupational diseases and its consequences (CO4)
- ULO 8 Discuss various PPE's used in industry as well Health Monitoring in industry.(CO4)

Class: T. Y. B.Tech Environmental Engineering	L	Т	Р	Credits			
Title of the Course: Water Conservation and Management(OE-I)	2	1	-	3			
Course No.: OEL0633							
Course Pre-Requisite:							
Students shall have knowledge of:							
• Water crises and impact mismanagement of water usage							
• Importance of water usage							
Concept of sustainability							
Course Description:							
The objective of the course is imparting fundamental knowledge of wa	ter cris	es due	e to exp	ploitation and			
overuse natural resources of water. Student will get knowledge of sustai	nable	develo	pment	with the help			
of water conservation and management.							
Course Objectives:							
At the end of the course students will be able to							
1. Apply knowledge about concept, necessicity & scope of water con	nservat	ion an	d Man	agement.			
2. Understand general, scientific & engineering approaches regarding of water using different technologies.	2. Understand general, scientific & engineering approaches regarding proper planning & utilization of water using different technologies.						
3. Develop communication skill so as to create awareness about team among society.	n work	, com	munity	participation			
4. Enhance skill for conservation & utilization of natural resources s sustainable development.	uch as	land, v	water a	nd air for			
5. Inculcate professional and multi disciplinary approach for success environmental engineering.	in var	ious b	ranche	s of civil &			

Course	e Learning Outcomes:		
со	After the completion of the course the student should be	Bloom's Cognitive	Level
	able to	Descriptor	TT 1 / 1º
CO1	explain significance and necessicity of water conservation, Management and sustainable management practices.	Cognitive	Explain L2
CO2	Apply knowledge of general, scientific &engineering approaches regarding proper planning & utilization of water using different technologies.	Cognitive	(Applying) Apply L2
CO3	Assess Socio – Economic Aspects of Watershed Management through community participation, water legislation and implementations.	Cognitive	(Evaluating ) Assess L5
CO4	Analyze standard watershed model based on standard modeling approaches and classifications.	Cognitive	(Analyzing) Analyze L4
CO5	Develop appropriate technology for water conservation and management with low cost.	Cognitive	(Developing) Develop L6

# **CO-PO Mapping:**

CO	<b>PO1</b>	PO2	PO3	PO4	PO5	<b>PO6</b>	<b>PO7</b>	<b>PO8</b>	PO9	<b>PO10</b>	PO11	<b>PO12</b>
CO1	1	-	2	-	2	-	-	-	-	-	-	-
CO2	-	-	1	-	-	2	3	-	-	-	-	-
CO3	-	-	-	-	-	2	2	-	-	-	-	-
<b>CO4</b>	-	-	-	-	-	-	1	2	-	-	-	-
CO5	-	-	-	-	-	-	-	-	-	1	2	2

CO	PSO1	PSO2
<b>CO1</b>	-	-
CO2	-	-
CO3	-	1
<b>CO4</b>	-	2
CO5	-	2

Assessment	Weightage (Marks)				
ISE-1	10				
MSE	30				
ISE-2	10				
ESE	50				
• ISE-1 and ISE-2: Assessment is based on Assign	ment/Declared Test/Quiz/Seminar/Group				
Discussions etc. (For each ISE two different tools are to be used).					

66

- MSE: Assessment is based on 50% of course content (Normally first three Units)
- **ESE:** Assessment is based on 100% course content with 30% weightage for course content covered before MSE and 70% weightage for course content covered after MSE.

<b>Unit 1: Introduction to water conservation and management</b> : Status in India, historical <b>6Hr</b>	S
shortage and scarcity ,Problems of surface & ground water quantity & quality, Surface water Scenario, Ground Water Scenario	
Unit 2: Surface water Scenario: Investigation of surface water, data & analysis, utilization of wasted flows, rainwater harvesting, groundwater potential & harvesting, well construction, integrated water resources management. development in Irrigation Sector, , Low Irrigation Efficiency, Industrial & Other Uses, Declining per capita water availability8Hn	rs
Unit 3: Ground Water Scenario:Ground water states, ground water sources, Types of aquifers, Ground water conservation, soil conservation, soil & soil moisture conservation, conservation measures, rainwater management, Water resources development.6Hr	ŝ
Unit 4: Water quality: Domestic sector - urban and rural water supply, Water quality issues7Hrof surface and groundwater in India, Pathogenic pollution in both sources, Salinity in both5000000000000000000000000000000000000	S
Unit 5: Water use management: Agriculture, sustainable agriculture, dry land agriculture, and selection of water use efficiency, crops, irrigation, water losses, Issues and challenges in the water resources development and management, mitigate Gap between demand and availability, wetland management. Advanced Irrigation techniques, IT tools for water distribution, Development of Modeling Tools, Less water consuming gadgets, Water saving Technologies, Research in desalination & wastewater Treatment, Developing water resistant crop varieties, Policy Research8Hr	S
<ul> <li>Unit 6: Watershed concept – Introduction, Need, characteristics of watershed, proforma for basic data on watershed, watershed management, integrated multidisciplinary approach, administrative aspects. Socio economics, peoples part, awareness, participation, state &amp; integrated approach, pasture and silvipastures, horticulture, tree culture, farm forestry, afforestation, sustainable society, international agencies, future, economic viability.</li> <li>Impact of water shed management: Model watershed, Government watershed, Government projects, World bank projects, ICRISAT, NGOs in water shed management.</li> </ul>	Irs

# Textbooks:

1) Hydrology & Soil Conservation Engineering - Ghansham Das , Prentice Hall of India

2) Soil & Water Conservation Engineering - R. Suresh, Standard Punlishers Distributors

3) Manual of Soil & Water Conservation Practices - Gurumal Singh, Oxford & IBH Publishing Company

# **References:**

1) Watershed management - J.V.S.Murthy.

2) Watershed management in India - J.V.S.Murthy

3) Hydrology & Soil Conservation Engineering - Ghansham Das, Prentice Hall of India

4) Soil & Water Conservation Engineering - R. Suresh, Standard Punlishers Distributors

5) Manual of Soil & Water Conservation Practices - Gurumal Singh, Oxford & IBH Publishing Company

Unit wise Measurable Students Learning Objectives and Outcomes:

Unit-1 Explain significance and scope of watershed Management for sustainable development. CO1, CO2

**Unit-2** Apply concepts of integrated water resources management, conjunctive use of water resources, rainwater harvesting.**CO1**, **CO3** 

**Unit-3** Apply Socio–Economic aspects of watershed management through community and Private sector participation, Socio-economy.**CO2**, **CO3** 

**Unit-4** Develop standard watershed model based on standard modeling approaches and water quality models.**CO3**, **CO5** 

Unit-5 Assess role of greenery in wetland management, sustainable agriculture, dry land agriculture, selection of water use efficiency. CO2, CO4

**Unit-6** Understand the procedures of water shed management, Model watershed, Government projects national projects, World bank projects, ICRISAT, NGOs in water shed management. **CO5** 

Class: T. Y. B. Tech Environmental Engineering	L	Т	Р	Credit
Title of the Course: Research Methodology (Audit	02 hours	-	-	2
Course)	per week			
Course No.: UENV0664				
Course Pre-Requisite:				

This course is designed primarily for graduate students in Environmental Engineering who are aware of the domains in the field of Environmental Engineering. The students should have the basic knowledge of basic sciences.

#### **Course Description:**

The course is imparting fundamental knowledge of basic research skills and concepts needed to plan, conduct, and analyze data from a research project. Skills including performing literature searches, defining research problem, research methods, scale construction, data collection, analysis, interpretation and report writing will be taught.

#### **Course Learning Objectives:**

- 3. To search the literature and identify research gaps.
- 4. To form a research question with testable hypotheses.
- 5. To realize the concepts of reliability, validity, the pros and cons of a variety of research techniques and importance of IPRs.
- 6. To understand the characteristics of a good research report.

# **Course Outcomes:**

COa	After the completion of the course the students will be able	<b>Bloom's Cognitive</b>
COS	to	Descriptor
CO.1	Define a good research question, hypothesis and aims.	Cognitive
		(Understanding)
		L2
CO.2	Identify alternative research methodologies and analytical	Cognitive
	techniques for a chosen research question.	(Identifying)
		L3
CO.3	Analyze basic techniques of qualitative data gathering.	Cognitive
		(Analyzing)
		L4
CO.4	Summarize the study purpose, process, methods and	Cognitive
	results in preparation of research report.	(Evaluating)
		L5

#### **CO-PO Mapping:**

COs	PO1	PO2	PO3	PO4	<b>PO5</b>	<b>PO6</b>	<b>PO7</b>	<b>PO8</b>	<b>PO9</b>	PO10	PO11	PO12
CO.1	3	2		2				3				2
CO.2	2	1						2				2
CO.3				1				1				1
CO.4								1		2		1

COs	PSO1	PSO2	
CO.1			
CO.2		1	
CO.3		1	
CO.4		1	

Assessments :							
Assessment	Weightage (Marl	ks)					
ESE	50						
• <b>ESE:</b> Assessment is based on 100% course content.							
Course Contents:							
Unit 1:							
Introduction to Research Methodology: Meaning and Co	ncept of Research, Research	05 Hrs.					
Process, Objectives, Motivation, Ethics in Research, Ty	pes of Research – Basic,						
Applied, Descriptive, Analytical, Conceptual, Empirical, Qu	alitative and Quantitative.	05 11					
Unit 2: Desklam Handifferstion & Franceschtien Unite heating Convertend Need of Descent							
<b>Problem Identification &amp; Formulation</b> – Introduction, Concept and Need of Research							
Problem, Literature Survey, hypothesis, characteristics of hypothesis, Steps of Defining							
Formulating Research Problem	i i i i i i i i i i i i i i i i i i i						
Unit 3.		04 Hrs					
Measurement and Scaling Techniques – Concept of N	Measurement Measurement	04 1115.					
Scale. Developing Measurement Tools. Basic Criteria of	Good Measurement Tools.						
Errors in Measurement. Concept of Scaling and Types of Sc	ales.						
Unit 4:		04 Hrs.					
Methods of Data Collection – Concept of Data Collection, Types of Data, Methods of							
Primary Data Collection, Methods of Secondary Data Collection, Selecting an							
Appropriate Method of Data Collection.							
Unit 5:							
Intellectual Property Rights (IPRs) - Intellectual Property-Importance and Protection							
of Intellectual Property Rights (IPRs)- A brief summary of: Patents, Copyrights,							
Trademarks, Industrial Designs, Geographical Indications.							
Unit 6:		04 Hrs.					
Interpretation and Report Writing - Techniques of in	terpretation, Structure and						
Components of scientific reports, Layout, structure and	i language of the report,						
Toythooks:							
1 Books: C. R. Kothari "Research Methodology" Ne	w Age international 2004						
2 Deenak Chopra and Neena Sondhi "Research M	ethodology: Concepts and c	ases" Vikas					
Publishing House New Delhi 2008	emodology. Concepts and e						
3. Raniit Kumar "Research Methodology" A Step by	Step Guide for Beginners"	2nd Edition					
Sage Publisher, 2011.	step Suide for Degimers,	2114 Euliton,					
References:							
1. Garg, B.L., Karadia, R., Agarwal, F. and Agarwal,	U.K., 2002. An introduction	to Research					
Methodology, RBSA Publishers.	,						
2. Anderson, T. W., An Introduction to Multivariate	Statistical Analysis, Wiley	Eastern Pvt.,					
Ltd., New Delhi.							
3. Sinha, S.C. and Dhiman, A.K., 2002. Research	Methodology, Ess Ess Pul	blications. 2					
volumes.							
4. Trochim, W.M.K., 2005. Research Methods: the	concise knowledge base,	Atomic Dog					
Publishing. 270p.							
5. Day, R.A., 1992. How to Write and Publish a Scientific Paper, Cambridge University Press.							
6. Fink, A., 2009. Conducting Research Literature R	eviews: From the Internet to	Paper. Sage					
Publications.							
7. Coley, S.M. and Scheinberg, C. A., 1990, "Proposal Writing", Sage Publications.							
8. Intellectual Property Rights in the Global Econo	8. Intellectual Property Rights in the Global Economy: Keith Eugene Maskus, Institute for						
International Economics, Washington, DC, 2000.							
9. Subbarau NR-Handbook on Intellectual Property I	Law and Practice-S Viswana	than Printers					
and Publishing Private Limited.1998							

Class: T. Y. B. Tech Environmental Engineering Title of the Course: Wastewater Engineering Laboratory	L	Т	Р	Credi t
Course No.: UENV0631			02 hours	1
			per week	

Students shall have the knowledge of:

- Environmental Chemistry
- Wastewater treatment

# **Course Description:**

The course is explores the application of basic chemistry and chemical calculations to measure physical, chemical, and bacteriological parameters of wastewater. Laboratory methods and interpretation of results with regard to environmental engineering applications such as design and operation of wastewater treatment processes, and to the control of the quality of natural water.

# **Course Objectives:**

- 1. To provide hands-on practice for analyzing the quality of wastewater.
- 2. To study operation of a real life wastewater treatment plant. Course Learning Outcomes:

COs	After the completion of the course the students will be	<b>Bloom's Cognitive</b>
	able to	Descriptor
CO.1	Use physical, chemical and biological methods for	Cognitive
	wastewater quality analysis.	(Applying)
		L3
CO.2	Solve problems on design on various units for wastewater	Cognitive
	treatment	(Applying)
		L3
CO.3	Analyze and interpret the experimental results.	Cognitive
		(Analyzing)
		L4

#### **CO-PO Mapping:**

oo i o mupping.												
CO	1	2	3	4	5	6	7	8	9	10	11	12
CO1									2			
CO2			3									
CO3				2		1				1		

COs	PSO1	PSO2
CO1	2	
CO2		2
CO3	2	

# Assessments :

Assessment	Weightage (Marks)
ISE	50
ESE (OE)	50

- **ISE:** Based on practical performed/ results analyzed / designs of treatment unit/ Quiz/ Mini-Project assigned/ Presentation/ Group Discussion/ Internal oral etc.
- **ESE** (**OE**): Assessment is based on oral examination.

Course Contents:					
Experiment No. 1: Analysis of domestic wastewater for volatile and fixed	02 hours				
solids.					
Learning Outcome: To determine volatile and fixed solids and relation					
between them from domestic wastewater.					
Experiment No. 2: Analysis of domestic wastewater for BOD					
	02 110415				
Learning Outcome: To determine BOD of domestic wastewater.					
<b>Experiment No. 3:</b> Analysis of domestic wastewater for COD	02 hours				
1 5					
Learning Outcome: To determine COD of domestic wastewater					
<b>Experiment No. 4:</b> Analysis of domestic wastewater for Oil & Grease	02 hours				
1					
Learning Outcome: To determine Oil & Grease from domestic wastewater					
Experiment No. 5: Analysis of Sulphates from domestic wastewater					
<b>Learning Outcome:</b> To determine sulphates from domestic wastewater.					
<b>Experiment No.</b> 6: Analysis of domestic wastewater for TotlaKieldhal					
Nitrogen.					
6					
Learning Outcome: To determine Ammonia and organic nitrogen from					
domestic wastewater.					
<b>Experiment No. 7:</b> Analysis of domestic wastewater for Phosphorous	02 hours				
Experiment rot. 7.7 marysis of domestic wastewater for r hosphorous	02 110415				
Learning Outcome: Determination of Orthophosphates from domestic					
wastewater					
Experiment No. 7: Analysis of sludge	02 hours				
Experiment 100. 7. That you of studge	02 110013				
Learning Outcome: Determination of characteristics of sludge such as pH					
moisture content volatile solids					
Visit to sewage treatment plant	01 Day				
visit io sewage ireanitent plant	01 Day				
Rafarances.					
2. Chemistry for Environmental Engineering and Science. Clair N Sawver, Perry L					

- 2. Chemistry for Environmental Engineering and Science, Clair N Sawyer, Perry I McCarty, Gene F. Parkin
- 3. *Standard Methods for the Examination of Water and Wastewater* by American Public Health Association, American Water Works Association, Water Environment Federation
- 4. IS 3025: Methods of sampling and test (physical and chemical) for water and wastewater
| Class:                               | T. Y. B. Tech Environmental Engineering                               | L      | Т          | Р       | Credit |         |  |  |  |
|--------------------------------------|-----------------------------------------------------------------------|--------|------------|---------|--------|---------|--|--|--|
| Title of<br>Course                   | f the Course: Air Pollution and Control Laboratory<br>e Code:UENV0632 |        |            |         | 2      | 1       |  |  |  |
| Course                               | e Pre-Requisite:                                                      |        |            |         |        |         |  |  |  |
| Knowledge of Environmental chemistry |                                                                       |        |            |         |        |         |  |  |  |
| Course                               | e Description:                                                        |        |            |         |        |         |  |  |  |
| During                               | the course students will be demonstrated with use of each             | quipm  | nents i    | in labo | orator | ies and |  |  |  |
| hands-                               | on practice in the field for monitoring of various meteor             | rologi | cal pa     | ramet   | ers as | well as |  |  |  |
| Ambie                                | nt Air quality monitoring and stack gas monitoring                    | U      | 1          |         |        |         |  |  |  |
| Course                               | e Learning Outcomes:                                                  |        |            |         |        |         |  |  |  |
|                                      |                                                                       |        |            |         |        |         |  |  |  |
| CO                                   | After the completion of the course the student                        | Blo    | oom's      | Cogn    | itive  |         |  |  |  |
|                                      | should be                                                             | De     | Descriptor |         |        |         |  |  |  |
|                                      | able to                                                               |        | _          |         |        |         |  |  |  |
| <b>CO1</b>                           | Monitor various meteorological parameters needed                      | Psy    | ychom      | otor (  | L-2,   |         |  |  |  |
|                                      | for air pollution studies                                             | Mo     | Ionitor)   |         |        |         |  |  |  |
| CO2                                  | Design and conduct experiments for air quality                        | Psy    | ychom      | otor (  | L-5, I | Design, |  |  |  |
|                                      | monitoring                                                            |        |            |         |        |         |  |  |  |
| <b>CO3</b>                           | Analyze and interpret data acquired from air                          | Co     | gnitiv     | e( L-4  | , Ana  | lyse)   |  |  |  |
|                                      |                                                                       |        |            |         |        |         |  |  |  |

## **CO-PO Mapping:**

CO	1	2	3	4	5	6	7	8	9	10	11	12
CO1				3	2							
CO2				3	2	1	1					
CO3				4		2	1					

COs	PSO1	PSO2
CO1	1	
CO2	-	2
CO3	3	

#### Assessments :

Assessment	Weightage (Marks)
ISE	50
ESE (OE)	25

• **ISE:** Based on practical performed/ Quiz/ Mini-Project assigned/ Presentation/ Group Discussion/ Internal oral etc.

**ESE** (**OE**): Assessment is based on oral examination.

## **Course Content**

Experiment No. 1: To Measure ambient air temperature, relative humidity and dew point temperature, (CO-1), 2hrs.

Experiment No. 2 To measure wind speed and direction (CO-2), 2hrs.

Experiment No. 3: To study the functioning of Automatic weather station (CO-1), 2hrs.

Experiment No. 4: To Prepare wind rose diagram (CO-1), 2hrs.

Experiment No. 5:To study the functioning of Fine Dust Sampler-FDS (CO-2),, 2hrs.

Experiment No. 6:To determine ambient air quality with respect to SPM, RSPM, Sox and NOx(CO-2, 3), 2hrs.

Experiment No. 7:Demonstration of Stack gas Monitoring KIT (CO-2, 3), 2hrs.

**Textbooks:** 

- 1. K. Wark, C.F. Warner & W.T. Davis Air Pollution Control: its Origin and Control, Addision-Wesley, (1998).
- 2. Stern A.C., "Air Pollution Vol. I and II", Allied Publishers Limited, 1st Edition, 1994.
- **3.** Martin Crawford, "Air Pollution and Control", Tata McGraw Hill Publication, 1st Edition, 1976.

## **References:**

- Air Pollution and Control Technologies by Anjaneyulu, D", Allied Publishers, Mumbai, 2002
- 2. Environmental Pollution Control Engineering by Rao, C.S., Wiley Eastern Ltd., New Delhi, 1996
- 3. Industrial Air Pollution Control Systems by W.L.Heumann, McGraw-Hill, New York, 1997
- 4. Environmental Engineering by Peavy S.W., Rowe D.R. and Tchobanoglous G, McGraw Hill, New Delhi, 1985
- 5. Environmental Engineering Vol. II by Garg, S.K, Khanna Publishers, New Delhi
- 6. Fundamentals of Air Pollution by Richard W.Boubel, D.L.Fox, D.B.Turner&A.C.Stern, Reed Elsevier India Pvt. Ltd., New Delhi,

	-		-						
Class: T. Y. B. Tech Environmental Engineering	L	Т	P	Credit					
Title of the Course: Design of Concrete Structures			02 hours	1					
Laboratory			per week						
Course No.: UENV0633									
Course Pre-Requisite:									
Students shall have the knowledge of:									
• Algebra and Engineering Mathematics									
Engineering Mechanics									
Structural Mechanics									
Construction Technology									
Course Description:									
The course helps to develop as well as enhance mathematical ski	ills &	analy	tical abilities	by using					
various design philosophies to design various structural compo	onents	as p	er IS Code	456:2000					
provisions. Students design beams, slabs, columns, environmental structures with varying grades of									
material, Loading as well as spans. Knowledge of structural members helps in costing and valuation									
also.									
Course Objectives:									

- 7. To use concepts to design structural members and refer IS Code..
- 8. To apply checks to verify the designs.
- 9. To understand concept of design of structures related to Environmental Engg.. Course Learning Outcomes:

COs	After the completion of the course the students will be able to	<b>Bloom's Cognitive</b>
COS	After the completion of the course the students will be able to	Descriptor
CO1	Illustrate design philosophies and concents of Deinforced Coment	Cognitive
	Concepts design philosophies and concepts of Kennorced Centent	(Understanding)
	Concrete design	L2
CO2		Cognitive
	Examine the design solutions by using various checks.	(Analyzing)
		L4
		Psychomotor
CO3	Show ability to design structures related to Environmental Engg.	(Set)
		L2

#### **CO-PO Mapping:**

CO	1	2	3	4	5	6	7	8	9	10	11	12
CO1			3		2					1		
CO2			3		2					1		
CO3			3		2					1		

COs	PSO1	PSO2
CO1	-	2
CO2	-	2
CO3	-	2

Assessments :

Assessment	Weightage (Marks)					
ISE	50					

• **ISE:** Based on practical performed/ Quiz/ Mini-Project assigned/ Presentation/ Group Discussion/ Internal oral etc.

Course Contents:	
Experiment No. 1: Stress strain behavior of concrete and steel	
Learning Outcome:	2 Hours
Interpretation of behavior of the materials and estimating their permissible	
values od stress for design.	
Experiment No. 2: Use of Limit State method of Collapse (Limit state of	2 Hours
flexure)	
Learning Outcome:	
Design of singly reinforced sections with varying conditions.	
Experiment No. 3: Use of Limit State method of Collapse (Limit state of	2 Hours
flexure)	
Learning Outcome:	
Design of doubly reinforced sections with varying conditions.	
Experiment No. 4: Use of Limit State method of Collapse (Limit state of	2 Hours
flexure)	
Learning Outcome:	
Design of flanged sections with varying conditions.	
<b>Experiment No. 5: Use of Limit State method of Collapse</b> (Limit state of shear	2 Hours
& bond)	
Learning Outcome:	
Verification of design by applying checks for shear & bond	
Experiment No. 6: Use of Limit State method of Collapse (Limit state of	2 Hours
flexure) Learning Outcome: Design of one way slab	
Experiment No. 7: Use of Limit State method of Collapse (Limit state of	2 Hours
flexure) Learning Outcome: Design of two way slab	
Experiment No. 8: Use of Limit State method of Collapse (Limit state of	2 Hours
flexure) Learning Outcome: Design of cantilever slab	
<b>Experiment No. 9: Use of Limit State method of Collapse</b> (Limit state of	
flavura) Laarning Outcome: Design of staircase	2 Hours
nexure) Learning Outcome. Design of stancase.	
<b>Experiment No. 10:</b> Use of Limit State method of Collapse (Limit state of bond)	2 Hours
Learning Outcome: Design of rectangular and circular column	2 110013
<b>Experiment No. 11: Use of Limit State method of Collanse</b> (Limit state of bond)	
Learning Autoome: Design of rootengular water tenk	2 Hours
Learning Outome. Design of rectangular water tank.	
Experiment No. 12: Use of Limit State method of Collanse (Limit state of bond)	
Lappennicate 100, 12, Ose of Limit State method of Conapse (Limit state of Cond)	2 Hours
Learning Outcome: Design of circular water tank.	

# **Textbooks / Reference books:**

1 IS 456-2000

- 2. Limit state theory and Design -Karve and Shah, Structures publications , Pune
- 3. Reinforced Concrete Design Limit state A.K. Jain Nem Chand brothers Roorkee
- 4. Fundamentals of Reinforced Concrete –Sinha and Roy, S. Chand and company Ltd. Ram Nagar, New Delhi
- 6. Limit State Design of reinforced concrete P.C.Varghese, Prentice Hall, New Delhi
- 7. Reinforced Concrete Design- B.C. Punmia Laxmi publications New Delhi
- 8. Reinforced Concrete Design-M. L. Gambhir-Mc millan India Ltd. New Delhi
- 9. Special publications -16-Bureau of Indian standard

Class:	Г. Ү. В. '	Tech Er	nvironm	ental l	Enginee	ering		L	Т	I	2	Credi
Title of	f the Course: Design & Drawing of Environmental									0.4.1		t
System Course	IS Laboratory No.: UENV0634									04 hot we	irs per ek	2
Course	Course Pre-Requisite:											
Student	Students shall have the knowledge of:											
•	Engineering graphics											
•	Water S	Supply 1	Enginee	ering								
Course	Descrip	cludes	knowla	dae of	f design	n and di	owing o	of differ	ont u	votor on	d waat	awatar
treatme	ont units		t covers	uge of	n of sto	n anu u	ervoirs a	and sew	erage	system	iu wasi	lewalei
	Objecti	. A150 1 ves•		ucsig		nage ies			ciage	system	3	
Course	Objecti	VC5.										
1.	Underst	and wat	er and v	vastew	vater tre	eatment t	facilities					
2.	Learn d	lrawing	of w	ater a	nd was	stewater	treatme	ent unit	s, sto	orage r	eservoi	rs and
	seweras	ge syste	ms						,	U		
		5-~,~										
Course	Learnir	ng Outc	omes:									
COs	After t	he com	pletion	of the	course	the stud	ents will	be able		Bloom	's Cogn	itive
	to		•							De	scripto	r
CO1	Make u	ise of A	utoCAD	for dra	awing o	f treatme	nt units o	f water		Co	ognitive	9
001	and was	ste wate	r								L-3	
<b>CO3</b>	Design	and c	draw tr	eatmei	nt unit	s for w	ater and	d waste		C	• , •	
CO2	water,	service	reservo	ir and	sewer a	appurten	ances.			Cognitive		
											L-0	
<u> </u>												
	Mappii	ng:	2	4	5	6	7	0	0	10	11	12
C01	1	<u>_</u>	3	4	2	U	/	0	9	10	11	12
CO2	3	2	2		2							
								<b>I</b>			I	
					COs	PSO1	PSO2					
				(	CO1							
				(	CO2	1						
Assess	nents :											
		1 000	aamont			I		Woigh	togo	Montral		
	ISE 50											
	ESE (OE) 25											
•	ISE: Ba	sed on r	oractical	perform	med/ dra	awing she	eets/Quiz	/ Mini-P	roject	assigned	d/	
	Presentation/ Group Discussion/ Internal oral etc											
٠	• ESE (OE): Assessment is based on oral examination.											

Course Contents:						
<b>Experiment No. 1:</b> Flow sheet of conventional water and waste water treatment	2 Hours					
Learning Outcomes: To plan and draw treatment flow sheet of water and waste water treatment plant						
<b>Experiment No. 2:</b> Cascade Aerator, Hydraulic Mixing Unit (Parshall Plume) and Flash Mixer	4 Hours					
<b>Learning Outcomes:</b> To design and draw of Cascade Aerator, Hydraulic Mixing Unit and Flash Mixer						
Experiment No. 3: Clarifier, Clariflocculator	2 Hours					
Learning Outcomes: To design and draw Clarifier, Clariflocculator						
<b>Experiment No. 4:</b> Rapid Sand Filter <b>Learning Outcomes:</b> To design and draw Rapid Sand Filter	2 Hours					
Experiment No. 4: Service Reservoir	4 Hours					
Learning Outcomes: To design and draw Service Reservoir	2.11					
Experiment No. 5: Screen chamber and Detritus Pit	2 Hours					
Learning Outcomes: To design and draw Screen Chamber and Detritus Pit						
Experiment No. 6: Sewer Profile	4 Hours					
Learning Outcomes: To design and draw Sewer Profile						
<b>Experiment No. 7:</b> Hydraulic flow diagram of conventional water and waste water treatment plant using AutoCAD <b>Learning Outcomes:</b> To draw hydraulic flow diagram of conventional water and waste water treatment plant using AutoCAD	2 Hours					
<b>Experiment No. 8:</b> Water treatment units (any two) using AutoCAD	4 Hours					
Learning Outcomes: To draw water treatment units using AutoCAD						
References:	I					
5. Manual on Water Supply and Treatment (3 rd Ed) – Ministry of Urban Development, New Delhi, 1991.						
6. Manual on Sewerage and Sewage Treatment (2 nd Ed) – Ministry of Urbar Development, New Delhi, 1993.						
<ol> <li>Manual on Sewerage and Sewage Treatment (Final Draft) – Ministry of Urbar Development, New Delhi, 2012</li> </ol>						